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Chapitre 1

Introduction

1.1 Compressibilité d’un fluide
Selon le dictionnaire Larousse, la compressibilité est la ‘propriété qu’ont les corps de diminuer de

volume sous l’effet d’une augmentation de pression.’ En mécanique des fluides, la compressibilité est un
paramètre caractérisant la variabilité de la masse volumique (ou densité) ou de son inverse, le volume
spécifique (volume par unité de masse). Pour une particule de fluide, qui par définition a une masse
fixe, un changement de masse volumique correspond donc bien à un changement de volume. De ce fait,
il faudrait préférablement parler d’écoulement isochore (masse volumique constante) et isovolumique
(volume spécifique constant), ou non-isochore et non-isovolumique.

Le langage courant au fil du temps a forcé le choix sur le terme compressible au lieu de non-isochore.
Pour un fluide simple au repos (en condition hydrostatique), la masse volumique ne dépend que de

deux autres variables thermodynamiques (le Chapitre 2 sur les Eléments de Thermodynamique établit
la définition d’un système simple, pour lequel toute variable d’état thermodynamique n’est fonction que
de deux autres variables d’état).

Il est possible de choisir de la pression p et la température T comme variables indépendantes. Ainsi
toute variation infinitésimale de masse volumique ρ ou de volume spécifique v = 1/ρ par rapport à sa
valeur d’équilibre peut s’écrire :

dρ

ρ
= −dv

v
= α

T
dp− βp dT = (α

T
· p) dp

p
− (βp · T )

dT

T
(1.1)

où α
T

est le coefficient de compressibilité isotherme (à température constante) et βp le coefficient d’ex-
pansion ou de dilatation thermique isobare :

α
T
=

1

ρ

(
∂ρ

∂p

)
T

= −1

v

(
∂v

∂p

)
T

, βp = −
1

ρ

(
∂ρ

∂T

)
p

=
1

v

(
∂v

∂T

)
p

(1.2)

L’inverse de α
T

est dénoté module d’élasticité isotherme (en anglais, isothermal bulk modulus) :

KT =
1

α
T

(1.3)

Pour deux fluides classiques, l’air et l’eau, les valeurs des coefficients à pression et température
ambiantes prennent les valeurs suivantes :

Coefficient Name Air Eau
α
T
· p0 Compressibilité isotherme 1 4.6× 10−5

βp · T0 Dilatation thermique 1 0.061

Table 1.1 – Compressibilité de l’air et l’eau à T0 = 293 K et p0 = 1 atm (Sherman F. S., Viscous flow,
McGraw-Hill, 1990).

La variation de volume ou de masse volumique n’est donc pas seulement le résultat d’une variation de
pression comme le sous entend le mot compressibilité. La variation de volume peut également intervenir
à cause d’une variation de température (comme dans un thermomètre) ou tout autre variable d’état
comme l’entropie, l’enthalpie, et l’énergie interne (cf Chapitre 2). Tout fluide est donc compressible. Une
variation de la pression et/ou de la température engendre un changement de masse volumique. Pour
les liquides, la variation de pression requise pour atteindre un certain pourcentage de variation de la
masse volumique est plus élevée que pour un gaz. Cependant, les phénomènes physiques associés à la
compressibilité sont les mêmes, quel que soit le fluide, sous forme liquide ou gazeuse.
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1.2 Compressibilité et mouvement d’un fluide
La compressibilité d’un fluide intervient en hydrostatique, comme pour le cas de l’air dans un pneu.

La masse volumique de l’eau des océans varie avec la profondeur, quoique très faiblement, tandis qu’à
l’opposé la masse volumique de l’air de l’atmosphère peut varier sur plusieurs ordres de grandeurs avec
l’altitude.

Ce cours porte sur la compressibilité associée au mouvement de fluides.
Dans le cas d’ondes acoustiques, les variations de masse volumique sont très faibles. Cependant, ces

variations de masse volumique infinitésimales sont la clé pour la propagation de ces ondes sonores. A
ces variations périodiques de masse volumique sont associés des oscillations périodiques de particules de
fluide autour d’une position fixe, sans qu’il y ait un net déplacement du fluide. La vitesse de déplacement
du fluide au sein de l’onde est très inférieure à la vitesse de propagation a de l’onde.

Pour les écoulements (avec un transport net de fluide), l’importance de la compressibilité dépend
de plusieurs paramètres. Dans certains cas, comme pour l’écoulement de l’air autour d’une voiture, les
petites variations de masse volumique n’ont pas d’influence sur l’écoulement. L’écoulement est alors dit
incompressible. Quand les variations de masse volumique influent sur l’écoulement, on le dit compressible.

Des variations de température, et donc de la masse volumique, peuvent engendrer un mouvement
de fluide dans un champ gravitationnel. Ces phénomènes dits de convection sont associés à des vitesses
d’écoulements aussi bien faibles (eau chauffée dans une casserole) qu’élevées (ouragans dans l’atmo-
sphère).

Même en l’absence de champs de forces externes, la compressibilité d’un écoulement peut être in-
fluente, selon sa vitesse u par rapport à la vitesse a des ondes acoustiques. Ce rapport est appelé nombre
de Mach et dénoté M :

M =
u

a
. (1.4)

Sans l’effet de forces externes, l’écoulement est incompressible pour M ≲ 0.3, et compressible pour
M ≳ 0.3. En particulier, pour 0.3 ≲ M < 1, il est subsonique, pour M ∼ 1 transonique, pour M > 1
supersonique, et pour M >> 1 hypersonique. Une grande variété de phénomènes (ondes de chocs, par
exemple) peuvent apparaître dans un écoulement selon la valeur du nombre de Mach.

.
Ce cours se focalisera sur les ondes acoustiques et les écoulements à grand nombre de Mach, qui ont

pour dénominateur commun la vitesse du son (Thompson, 1972).

1.3 Outils pour l’étude de la compressibilité au sein des ondes et
des écoulements

Le fluide peut être représenté par ses constituants (atomes et molécules). Des équations de physique et
chimie statistiques comme celles de Boltzmann sont alors nécessaires pour la description macroscopique
du fluide. Pour des situations de gaz raréfiés (faible densité, comme pour la rentrée atmosphérique) ou à
l’échelle nanométrique, des simulations au niveau moléculaire sont envisageables.

Dans ce cours, l’hypothèse est faite d’un milieu continu. L’écoulement du fluide peut alors être décrit
par des modèles de milieux continus, comme les équations de Navier-Stokes.

Si la masse volumique reste constante, il ne peut y avoir d’ondes acoustiques, et l’écoulement du
fluide est dit incompressible. L’écoulement peut être alors décrit par l’équation de conservation de la
masse et les équations de conservation de la quantité de mouvement. La pression varie, mais la masse
volumique peut être considérée comme constante dans les équations. Un exemple classique est celui
de l’écoulement de l’eau. Pour un gaz où les variations de pression sont du même ordre de grandeur
que les variations de masse volumique (en particulier pour les gaz parfaits), comment est-il possible de
considérer l’écoulement comme incompressible (c’est à dire sans variations de masses volumique malgré
des variations de pression) ? De manière analogue, jusqu’à quelle vitesse l’écoulement de l’eau peut-il
être considéré comme incompressible ?

Pour les ondes acoustiques et les écoulements compressibles, une équation de conservation supplémen-
taire est nécessaire puisque la masse volumique intervient comme une nouvelle variable. Cette équation
est obtenue en appliquant la conservation de l’énergie aux particules de fluide. D’autres équations dites
constitutives sont nécessaires, car l’énergie doit être exprimée en fonction de variables d’état mesurables
comme la température et la pression.
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1.4 Structure du cours
Le Chapitre 2 introduit quelques notions de thermodynamique fondamentales pour le développement

de la théorie des écoulements compressibles.
Le Chapitre 3 établit les équations de mécanique des fluides nécessaires à l’étude des écoulements

compressibles sont présentées.
Le Chapitre 4 présente la théorie des écoulements isentropes permanents. Cette théorie est appliquée

au Chapitre 5 pour l’analyse de l’écoulement quasi-monodimensionnel permanent de gaz parfaits dans
les tuyères.

Le Chapitre 6 est dédié à une introduction sur les ondes de choc et de détente.
Le Chapitre 7 traite de manière plus détaillée les ondes de choc droites, tandis que le Chapitre 8

présente la théorie des ondes de chocs obliques.
Le Chapitre 9 décrit les écoulements de Prantl-Meyer, permettant des compressions et des détentes

isentropes.
Le Chapitre 10 présente une introduction aux écoulements bidimensionnels par l’intermédiaire de la

méthode des caractéristiques.

Figure 1.1 – Ecoulement autour d’un corps sphérique se déplaçant supersoniquement
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Chapitre 2

Eléments de thermodynamique

Ce Chapitre est un bref rappel de quelques notions de thermodynamique, qui seront nécessaires pour
l’étude des écoulements compressibles. Les ouvrages dans la bibliographie permettent de compléter le
contenu de ce Chapitre (Borel and Favrat, 2005; Borgnakke and Sonntag, 2019; Cengel et al., 2019;
Moran et al., 2019).

2.1 Premier principe de la thermodynamique

2.1.1 Variables thermodynamiques

La thermodynamique est décrite par les variables d’état et les grandeurs de parcours, ainsi que les
lois qui les relient.

Variable d’état Une variable d’état (‘state function’) est une quantité qui peut être mesurée (ou
évaluée, si la loi est connue) en un point et en un instant donnés. Le nom dérive du verbe être, et décrit
donc la ‘manière d’être d’un corps’ (dictionnaire Le Robert). Des exemples de variables d’état pour un
fluide sont la pression p, la température T , et la masse volumique (ou densité) ρ.

Une propriété fondamentale d’une variable d’état est que son intégrale entre deux états distincts 1 et
2 du système ne dépend pas de la transformation entre ces états mais uniquement des états eux mêmes,
soient les états initial et final de la transformation. En particulier une variable d’état ψ a pour propriété :∫ 2

1

dψ = ψ2 − ψ1,

∮
dψ = 0,

(2.1)

où le symbole d indique une différentielle totale ou exacte, parfois aussi appelée forme ou 1-forme diffé-
rentielle ou exacte.

Grandeur de parcours Une grandeur de parcours (‘path function’) est une quantité qui dépend de
l’histoire du système et non pas de son état actuel uniquement. Elle ne donne aucune information directe
sur l’état actuel du système.

Pour une grandeur de parcours ϕ, les relations (2.1) ne sont pas vérifiées et s’écrivent cette fois sous
la forme ∫ 2

1

δϕ ̸= ϕ2 − ϕ1,

∮
δϕ ̸= 0,

(2.2)

où le symbole δ est distinct du symbole d, car il n’est pas une différentielle totale/exacte. Ce symbole
est parfois représenté comme d̄ ou tout symplement d si la quantité est bien comprise comme grandeur
de parcours (Liepmann and Roshko, 1957).

Pour illustrer le concept de variable d’état et de grandeur de parcours, l’exemple de l’alpiniste gra-
vissant une montagne est couramment utilisé (Borel and Favrat, 2005). La variable d’état z (altitude)
ne dépend que de sa position actuelle alors que le chemin qu’il a suivi pour rejoindre deux points de son
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Figure 2.1 – Variable d’état (altitude z) et grandeur de parcours (longueur du chemin parcouru l)
(Borel and Favrat, 2005).

ascension est quelconque. Le dénivelé z2 − z1 est indépendant du chemin parcouru, alors que la distance
parcourue l (grandeur de parcours) dépend du chemin emprunté par l’alpiniste. De plus, si l’alpiniste
revient à sa position de départ, la différence d’altitude est nulle alors que le chemin suivi est de longueur
non nulle, illustrant ainsi les propriétés (2.1) et (2.2).

Système simple Un système est dit simple si et si seulement toute variable d’état le décrivant est
entièrement définie par sa composition chimique, sa masse m, et deux autres variables d’état indépen-
dantes.

Un système monophasique, fermé, dont la composition chimique et la masse m sont connues, en
équilibre thermique et mécanique, est généralement simple.

Par conséquent, si ψ1, ψ2, et ψ3 sont des variables d’état indépendantes, un système simple permet
d’écrire :

ψ1 = ψ1(ψ2, ψ3),

dψ1 =

(
∂ψ1

∂ψ2

)
ψ3

dψ2 +

(
∂ψ1

∂ψ3

)
ψ2

dψ3.
(2.3)

2.1.2 Formulation du premier principe

Une particule de fluide est par définition un système fermé. Un système fermé implique que sa masse
est constante, et qu’il n’y a donc pas de transfert de masse à travers la surface délimitant le système.
Les transferts d’énergie (conduction, rayonnement et énergie mécanique) sont autorisés. La particule est
supposée être chimiquement inerte. D’après le premier principe, la somme de l’énergie fournie sous forme
de chaleur δQ et de travail δW à une masse m de fluide est égale à la variation de son énergie totale
dEt :

dEt = δQ+ δW (2.4)

Comme la masse d’une une particule de fluide est invariante par définition, il est possible de normaliser
l’équation par la masse du système et utiliser des symboles en lettres minuscules pour représenter des
quantités massiques (par unité de masse), selon la Figure 2.2 :

det = δq + δw (2.5)

Figure 2.2 – Particule de fluide considérée comme un système fermé de masse constante et chimiquement
inerte.
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Le premier principe exprimé pour la particule de fluide de masse fixe s’écrit alors sous la forme :

det = de+ decin + depot = δq + δw, (2.6)

ce qui traduit le principe général de conservation de l’énergie. A noter que l’énergie interne, cinétique et
potentielle sont considérées comme des variables d’état.

Dans le restant du cours, les symboles en lettres minuscules représentent des quantités massiques
(par unité de masse).

L’énergie totale et (en unités J/kg) est la somme de son énergie interne e, son énergie cinétique ecin,
et son énergie potentielle epot. Les énergies cinétiques et potentielles sont des énergies macroscopiques,
correspondant respectivement à la vitesse de la particule de fluide et à sa position dans un champ de
force.

L’énergie interne représente l’énergie contenue dans la particule de fluide à l’échelle moléculaire/atomique.
L’énergie interne est composée de :

— Energie d’agitation thermique (ou sensible) : translation atomique/moléculaire, rotation molécu-
laire, vibration moléculaire, spin nucléaire/électronique

— Energie latente : énergie d’interaction entre atomes/molécules, absorbée ou libérée lors d’un chan-
gement de phase gaz-liquide

— Energie chimique : énergie contenue dans les liaisons entre atomes au sein d’une molécule, absorbée
ou libérée lors d’une réaction chimique provoquant la formation ou la rupture d’une liaison (comme
l’oxygène O2 donnant naissance à deux atomes O en écoulement hypersonique, ou le carbone C se
combinant avec l’oxygène pour former du CO2 lors d’une réaction de combustion)

— Energie nucléaire, contenue dans les liaisons entre constituants du noyau (protons et neutrons)

Dans ce cours, sauf contre-indication, les fluides sont monophasiques (pas de changement de phase),
sont chimiquement inertes, et ne subissent pas de réactions nucléaires. Les variations de l’énergie in-
terne ne se manifestent donc qu’avec des variations de l’énergie de translation atomique/moléculaire, de
rotation moléculaire, et de vibration moléculaire.

2.1.3 Formulation alternative du premier principe

L’objectif est de dériver une expression pour le travail mécanique δw qui ne fasse intervenir que des
variables d’état.

Le système est représenté dans la Figure 2.3. Il est formé d’un cylindre de volume V et de section S.
Le système est homogène et isotrope, et le déplacement du piston se fait de manière réversible, c’est à
dire sans frottement et lentement (quasi-statique). Par définition, le volume spécifique v du gaz enfermé
dans le cylindre et son inverse la masse volumique ρ sont définis par

v =
1

ρ
=
V

m
, (2.7)

Figure 2.3 – Cylindre de section S et volume V
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où m est la masse contenue dans le volume V . Puisque le système est fermé, sa masse est constante ce
qui permet d’obtenir la relation différentielle

dV = mdv. (2.8)

La position du piston est x0 lorsque le volume vaut V0. Lorsque le piston se trouve en x, le volume V
enfermé dans le cylindre peut être exprimé en fonction de cette variable sous la forme

V − V0 = S(x− x0), (2.9)

ce qui peut s’écrire sous forme différentielle de la manière suivante

dV = S dx. (2.10)

L’élimination de dV entre les relations (2.8) et (2.10) permet d’obtenir la relation entre un changement
infinitésimal de volume massique et de position

dx =
m

S
dv. (2.11)

Comme la masse du piston est négligeable, que la pression externe est nulle, que les frottements sont
négligés, et que les mouvements sont lents (permettant ainsi d’avoir une pression uniforme au sein du
réservoir), la force extérieure F exercée sur le piston est en équilibre avec la force de pression s’exerçant
sur la paroi intérieure du piston. Elle est donc égale et opposée à la force de pression, et peut alors s’écrire

F = −pS, (2.12)

où p est la pression à l’intérieur du système. Par suite, le travail δw par unité de masse pour un dépla-
cement dx s’exprime par

δw =
F

m
dx. (2.13)

Avec les relations (2.11) et (2.12), l’équation précédente devient

δw =
F

m
dx =

(−pS)
m

(m
S
dv
)
= −p dv. (2.14)

Ainsi, pour un processus réversible (lent et sans frottements), l’expression de la variation de travail
massique δw s’exprime uniquement en fonction de variables d’état avec une différentielle totale dv. Le
résultat obtenu (2.14) peut être inséré dans l’expression du premier principe (2.6), ce qui produit une
expression valable uniquement pour un processus réversible (les énergies cinétique et potentielle sont
également négligées)

det = de = δq + δw = δq − pdv. (2.15)

Il ne restera plus qu’à trouver une expression pour δq qui, elle aussi, ne soit fonction que de variables
d’état. Ceci se fera avec l’utilisation du second principe de la thermodynamique et d’une nouvelle variable
d’état, l’entropie,

Remarque Le remplacement de δw par −pdv nécessite que le processus soit réversible, c’est à dire
lent et sans frottements. En particulier, le déplacement doit être suffisamment lent pour que la pression
soit uniforme dans le volume V . Si le déplacement était rapide, alors des phénomènes instationnaires
pourraient se produire, avec une variation spatiale de la pression au sein du volume.

2.1.4 Chaleurs spécifiques

Tout transfert de chaleur δq entre le système et l’extérieur implique une variation de sa température.
La chaleur spécifique c d’un gaz est définie par la relation

c =
δq

dT
. (2.16)
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Or, q n’est pas une variable d’état. Il est possible de spécifier la transformation au cours de laquelle la
grandeur δq est échangée afin que la chaleur spécifique soit une variable d’état. Si les énergies potentielle
et cinétique sont négligées, det ≃ de, la relation (2.15) s’écrit

δq = de+ pdv, (2.17)

qui, après division par dT , devient

c =
δq

dT
=

de

dT
+ p

dv

dT
. (2.18)

Les chaleurs spécifiques usuelles sont à pression constante cp et à volume constant cv, et sont définies
par

cp =

(
δq

dT

)
p

,

cv =

(
δq

dT

)
v

.

(2.19)

Puisque le système est simple, l’énergie interne e peut être exprimée uniquement en fonction de la
température T et du volume massique v par

e = e(v, T ), (2.20)

qui devient à l’aide de la relation différentielle (2.3) puis de la relation (2.17)

de =

(
∂e

∂v

)
T

dv +

(
∂e

∂T

)
v

dT = δq − pdv. (2.21)

Avec cette relation et en vertu des définitions (2.19) pour les chaleurs spécifiques à pression et à volume
constants, les chaleurs spécifiques cp et cv peuvent s’écrire en fonctions de variables d’état

cv =

(
δq

dT

)
v

=

(
∂e

∂T

)
v

,

cp =

(
δq

dT

)
p

=

(
∂e

∂T

)
v

+

[(
∂e

∂v

)
T

+ p

](
∂v

∂T

)
p

.

(2.22)

La transformation à volume massique constant fournit une expression simple pour cv mais une expression
complexe pour cp, car les termes en dv ne s’annulent pas pour la transformation à pression constante.

La question se pose s’il n’existerait pas une autre variable d’état que l’énergie interne e qui conduise
à une définition plus simple pour cp. Cette fonction est l’enthalpie h dont la définition est

h = e+ pv, (2.23)

ce qui se traduit sous forme différentielle par l’expression suivante

dh = de+ pdv + vdp = δq + vdp, (2.24)

où la dernière égalité est obtenue en utilisant l’expression alternative du premier principe (2.15). De la
même manière que précédemment, un système simple implique l’existence d’une relation de la forme

h = h(p, T ), (2.25)

qui devient à l’aide de la relation différentielle (2.3) puis de la relation (2.24)

dh =

(
∂h

∂p

)
T

dp+

(
∂h

∂T

)
p

dT = δq + vdp. (2.26)

Avec cette relation et en vertu des définitions (2.19) pour les chaleurs spécifiques à pression et à volume
constants, les chaleurs spécifiques cp et cv peuvent s’écrire en fonctions de variables d’état

cv =

(
∂h

∂T

)
p

+

[(
∂h

∂p

)
T

− v
](

∂p

∂T

)
v

,

cp =

(
δq

dT

)
p

=

(
∂h

∂T

)
p

.

(2.27)
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En combinant les relations (2.22) et (2.27), il est aussi possible d’écrire

cp − cv =
[
p+

(
∂e

∂v

)
T

](
∂v

∂T

)
p

,

cp − cv =
[
v −

(
∂h

∂p

)
T

](
∂p

∂T

)
v

.

(2.28)

Le rapport des chaleurs spécifiques γ est défini comme

γ =
cp
cv

=

(
∂h

∂T

)
p(

∂e

∂T

)
v

. (2.29)

Cette grandeur est une caractéristique très importante du fluide.

2.2 Second principe de la thermodynamique
Le second principe traduit le caractère irréversible de toute transformation thermodynamique d’un

système et nécessite l’introduction d’une nouvelle variable d’état appelée entropie. Cependant, pour de
nombreuses transformations thermodynamiques, les effets liés à l’irréversibilité sont négligeables. Dans
ce cas, le processus thermodynamique est considéré comme réversible et il existe une évolution inverse
faisant passer le système de son état final à son état initial. L’intérêt de considérer des transformations
réversibles est motivé par la substitution du terme δq dans le premier principe pour ne faire intervenir
que des variables d’état.

2.2.1 Entropie
La loi de Clausius affirme que, pour une transformation réversible avec transfert de chaleur δq entre

le système à température T et l’extérieur, ∮ (
δq

T

)
rév

= 0. (2.30)

Il est alors possible d’introduire une nouvelle variable d’état s, l’entropie, qui, pour une transformation
réversible avec transfert de chaleur δq entre le système à température T et l’extérieur, est définie par

ds =

(
δq

T

)
rév

. (2.31)

L’entropie étant une variable d’état, elle peut être utilisée quelque soit le type de transformation, réver-
sible ou irréversible. Il est alors possible d’écrire d’une manière plus générale

ds =
δq

T
+ δsi, (2.32)

où le terme δsi représente l’action des phénomènes irréversible de la transformation. Ceux-ci peuvent par
exemple résulter de phénomènes de dissipation interne, transfert de chaleur interne, diffusion d’espèces
chimiques ou encore réactions chimiques.

2.2.2 Formulation du second principe
Comme souligné au début de cette section, toute transformation thermodynamique réelle est irréver-

sible. D’après le second principe de la thermodynamique, la variation d’entropie d’un système thermo-
dynamique quelconque, due aux opérations internes, ne peut être que positive ou nulle. Ceci se traduit
sous forme différentielle par l’une ou l’autre des relation suivantes

δsi ≥ 0,

ds ≥ δq

T
.

(2.33)
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Ces équations sont diverses formes du second principe de la thermodynamique. Si les phénomènes irré-
versibles d’une transformation sont négligeables (δsi = 0), la relation (2.32) donne immédiatement

δq = Tds. (2.34)

Il est alors possible de ne faire apparaître que des variables d’état dans l’expression du premier principe
puisque les relations (2.15) et (2.24) deviennent maintenant

de = δq − pdv = Tds− pdv,

dh = Tds+ vdp,
(2.35)

ou de manière équivalente
Tds = de+ pdv = dh− vdp. (2.36)

Ces relations, appelées relations de Gibbs, sont intéressantes, car elle ne contiennent que des variables
d’état.

Ces relations ont été établies en supposant que le processus était réversible. Or, ces relations ne
font intervenir que des variables d’état, et doivent être valables indépendamment du processus, qu’il soit
réversible ou irréversible. Si le processus est irréversible, ces relations restent donc valables. En particulier,
si le processus est irréversible, δq < Tds et le travail des forces de pression doit donc être plus grand que
p dV afin que les relations de Gibbs restent vérifiées.

Les relations de Gibbs sont les relations fondamentales de la thermodynamique, car valables tout
aussi bien pour des processus réversibles qu’irréversibles.

2.3 Transformations thermodynamiques

2.3.1 Relations thermodynamiques

Il est possible de trouver des relations générales entre variables thermodynamiques et entre leurs
différentielles mutuelles.

Relations thermodynamiques obtenues à partir de s = s(T, p) et h = h(T, p)

Pour des systèmes simples, il est toujours possible d’écrire des relations de la forme s = s(T, p) et
h = h(T, p). Par conséquent, les expressions différentielles associées à ces équations s’écrivent

ds =

(
∂s

∂T

)
p

dT +

(
∂s

∂p

)
T

dp, (2.37)

dh =

(
∂h

∂T

)
p

dT +

(
∂h

∂p

)
T

dp = cpdT +

(
∂h

∂p

)
T

dp. (2.38)

La relation de Gibbs (2.36) et la seconde relation ci-dessus (2.38) donnent

ds =
dh

T
− vdp

T
=

1

T

[
cpdT +

(
∂h

∂p

)
T

dp

]
− vdp

T
, (2.39)

puis

ds =
1

T
cpdT +

1

T

[(
∂h

∂p

)
T

− v
]
dp, (2.40)

qui par identification avec (2.37) génère les deux relations thermodynamiques suivantes(
∂s

∂T

)
p

=
1

T

(
∂h

∂T

)
p

=
cp
T
, (2.41)
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(
∂s

∂p

)
T

=
1

T

[(
∂h

∂p

)
T

− v
]
. (2.42)

En tenant compte de la propriété différentielle des dérivées croisées(
∂

∂p

(
∂s

∂T

)
p

)
T

=

(
∂

∂T

(
∂s

∂p

)
T

)
p

, (2.43)

on obtient (
∂h

∂p

)
T

= v − T
(
∂v

∂T

)
p

=
1

ρ
+
T

ρ2

(
∂ρ

∂T

)
p

=
1

ρ
(1− βp · T ). (2.44)

Quand cette relation est insérée dans (2.42), on obtient une des relations de Maxwell :(
∂s

∂p

)
T

= −
(
∂v

∂T

)
p

= −βpv. (2.45)

Avec la relation de réciprocité : (
∂s

∂p

)
T

(
∂p

∂T

)
s

(
∂T

∂s

)
p

= −1, (2.46)

alors (
∂T

∂p

)
s

=
βpTv

cp
. (2.47)

De manière similaire avec la relation de réciprocité :(
∂h

∂p

)
T

(
∂p

∂T

)
h

(
∂T

∂h

)
p

= −1, (2.48)

alors le coefficient de Joule-Thompson µ
JT

peut être obtenu

µ
JT
≡
(
∂T

∂p

)
h

= −1− βpT
ρcp

. (2.49)

Il est ainsi possible d’écrire pour un fluide (simple) :

dh = cp(dT − µJT
dp) = cpdT +

1

ρ
(1− βpT )dp (2.50)

Relations thermodynamiques obtenues à partir de s = s(v, T ) et e = e(v, T )

Pour des systèmes simples, il est toujours possible d’écrire des relations de la forme s = s(v, T ) et
e = e(v, T ). Par conséquent, les expressions différentielles associées à ces équations s’écrivent

ds =

(
∂s

∂v

)
T

dv +

(
∂s

∂T

)
v

dT, (2.51)

de =

(
∂e

∂v

)
T

dv +

(
∂e

∂T

)
v

dT. (2.52)

La relation de Gibbs (2.36) et la seconde relation ci-dessus (2.52) donnent

ds =
de

T
+
pdv

T
=

1

T

[(
∂e

∂v

)
T

dv +

(
∂e

∂T

)
v

dT

]
+
pdv

T
, (2.53)

puis

ds =
1

T

[
p+

(
∂e

∂v

)
T

]
dv +

1

T

(
∂e

∂T

)
v

dT, (2.54)

qui par identification avec (2.51) génère les deux relations thermodynamiques suivantes(
∂s

∂T

)
v

=
1

T

(
∂e

∂T

)
v

=
cv
T
, (2.55)
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(
∂s

∂v

)
T

=
1

T

[
p+

(
∂e

∂v

)
T

]
. (2.56)

En tenant compte de la propriété différentielle des dérivées croisées(
∂

∂v

(
∂s

∂T

)
v

)
T

=

(
∂

∂T

(
∂s

∂v

)
T

)
v

, (2.57)

on obtient (
∂e

∂v

)
T

= T

(
∂p

∂T

)
v

− p,

(
∂e

∂ρ

)
T

=
1

ρ2

[
p− T

(
∂p

∂T

)
ρ

]
.

(2.58)

2.3.2 Calcul de la variation d’entropie
Le changement d’entropie lors d’une transformation générale entre deux états infiniment proches est

donnée par la relation de Gibbs (2.36) qui est reproduite ici

ds =
1

T
de+

p

T
dv. (2.59)

Par intégration des transformations infinitésimales séparant les états 1 et 2, il est possible d’écrire la
variation d’entropie entre ces états sous la forme

∆s = s2 − s1 =

∫ 2

1

de

T
+

∫ 2

1

p

T
dv. (2.60)

Comme le système est simple, l’énergie interne est de la forme e = e(v, T ) ce qui conduit à l’expression

∆s =

∫ 2

1

1

T

[(
∂e

∂T

)
v

dT +

(
∂e

∂v

)
T

dv

]
+

∫ 2

1

p

T
dv. (2.61)

Avec les relations thermodynamiques (2.55) et (2.58) ainsi que de la définition de la chaleur spécifique à
volume constant (2.22), il est possible d’écrire

∆s =

∫ 2

1

cv
T
dT +

∫ 2

1

1

T

[(
∂e

∂v

)
T

+ p

]
dv =

∫ 2

1

cv
T
dT +

∫ 2

1

(
∂p

∂T

)
v

dv, (2.62)

qui est une relation générale puisque aucune hypothèse n’a été faite pour la transformation.

2.3.3 Transformation isentropique
A partir de la relation (2.32)

ds =
δq

T
+ δsi, (2.63)

une transformation est isentropique quand il n’y a pas de variations d’entropie, ds = 0. C’est le cas pour
une transformation adiabatique, c’est à dire avec δq = 0, et réversible, c’est à dire avec δsi = 0.

2.3.4 Vitesse du son
Un milieu fluide est choisi au repos avec les propriétés uniformes p0, ρ0, s0. Le fluide est tel que

toute dissipation et conduction thermique sont absentes de toute transformation. L’entropie s reste alors
constante au cours du temps, soit s = s0. Par conséquent, il suffit de connaître une seule autre variable
d’état pour déterminer complètement l’état du système simple, comme par exemple p = p(ρ).

Une très petite perturbation de pression est générée dans le fluide. Avec un développement en série
de Taylor autour des conditions de référence p0 et s0, il est possible d’écrire

∆p = p− p0 =

(
∂p

∂ρ

)
s

(ρ− ρ0) +
1

2

(
∂2p

∂ρ2

)
s

(ρ− ρ0)2 + . . . . (2.64)
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et définir la grandeur

a20 =

[(
∂p

∂ρ

)
s

]
0

, (2.65)

où le symbole 0 indique que la dérivée est évaluée aux conditions de référence. Au premier ordre, l’équation
devient

∆p = p− p0 = a20(ρ− ρ0) = a20∆ρ, (2.66)

où la grandeur a0 a la dimension du carré d’une vitesse. Ceci conduit naturellement à la définition de la
vitesse du son.

Vitesse du son La vitesse du son est la grandeur a définie par

a =

√(
∂p

∂ρ

)
s

, (2.67)

qui correspond à la vitesse de propagation des ondes de pression.

2.3.5 Compressibilité

Comme indiqué dans le Chapitre de l’Introduction, en mécanique des fluides la compressibilité est
une indication de la variation de la masse volumique, quelle qu’en soit la cause.

En thermodynamique, le coefficient de compressibilité d’un fluide quantifie la variation du volume V
d’une particule de fluide (et donc de sa masse volumique) sous l’effet de la pression p.

Coefficient de compressibilité Le coefficient de compressibilité d’un fluide est définie par la relation

α = − 1

V

(
dV

dp

)
. (2.68)

Le signe négatif est indicateur du fait que pour des fluides normaux une augmentation de pression dp
engendre une variation négative du volume dV .

Cependant cette définition n’est pas suffisante pour un fluide dépendant de deux variables d’état. Si
la température d’un élément fluide reste constante, on définit la compressibilité isotherme par

α
T
= − 1

V

(
∂V

∂p

)
T

. (2.69)

D’autre part si aucune chaleur n’est enlevée ou ajoutée à l’élément et si tout phénomène irréversible est
ignoré, la compression est isentropique et le coefficient de compressibilité est défini par

αs = −
1

V

(
∂V

∂p

)
s

. (2.70)

Comme la masse m est constante pour une particule de fluide, le coefficient de compressibilité peut être
écrit en fonction du volume massique (ou spécifique) v

α
T
= −1

v

(
∂v

∂p

)
T

et αs = −
1

v

(
∂v

∂p

)
s

. (2.71)

De manière similaire, le coefficient de compressibilité peut s’écrire en fonction de la masse volumique ρ

α =
1

ρ

(
dρ

dp

)
. (2.72)

où le signe négatif n’apparaît plus du fait que ρ est égal à 1/v.
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Compressibilité Le choix des variables d’état décrivant la variation de la masse volumique est fait
selon le contexte de la transformation (ou l’écoulement).

Comme indiqué dans le Chapitre de l’Introduction, il est commun d’utiliser des variables d’états
facilement mesurables (pression p et température T ) pour exprimer la compressibilité, c’est à dire la
variation de masse volumique ou de volume spécifique

dρ

ρ
= −dv

v
= α

T
dp− βp dT = (α

T
· p) dp

p
− (βp · T )

dT

T
, (2.73)

où le coefficient d’expansion thermique isobare a été donné en (1.2) et est reproduit ici

βp = −
1

ρ

(
∂ρ

∂T

)
p

=
1

v

(
∂v

∂T

)
p

. (2.74)

Dans le cadre de ce cours, les écoulements sans transfert de chaleur et sans frottements, dits isen-
tropiques, sont communs. De ce fait, le choix de la pression p et de l’entropie s comme variables d’état
donne

dρ

ρ
=

1

ρ

(
∂ρ

∂p

)
s

dp+
1

ρ

(
∂ρ

∂s

)
p

ds = αs dp−
βpT

cp
ds (2.75)

où le coefficient devant la variation d’entropie ds s’obtient avec le résultat mathématique classique entre
différentielles partielles et l’utilisation de la relation thermodynamique (2.103) pour cp

1

ρ

(
∂ρ

∂s

)
p

=
1

ρ

(
∂ρ

∂T

)
p(

∂s

∂T

)
p

= −βpT
cp

(2.76)

Ainsi, pour un écoulement (ou une transformation) isentropique

dρ

ρ
= αs dp =

p

ρ

1(
∂p

∂ρ

)
s

dp

p
=

p

ρa2
dp

p
(2.77)

Remarque Pour spécifier la compressibilité d’un écoulement isnetrope, le module d’élasticité isentro-
pique Ks (appelé en anglais, isentropic bulk modulus) peut aussi être utilisé. Il est défini par

Ks =
1

αs
= ρ

(
∂p

∂ρ

)
s

= ρa2, (2.78)

Interprétation du nombre de Mach

Nous avons vu en introduction que la grandeur caractérisant la compressibilité d’un écoulement est
le nombre de Mach dont nous rappelons la définition

M =
u

a
, (2.79)

où a est la vitesse du son locale et u la norme de la vitesse locale u de l’écoulement. En considérant le
carré du nombre de Mach, il est possible de faire apparaître le module d’élasticité isentropique (2.78).
En effet

M2 =
u2

a2
=
ρu2

Ks
=
ρu2S

KsS
, (2.80)

où S est une surface arbitraire. Or, le numérateur et le dénominateur du dernier membre de cette relation
peuvent être interprétés comme des forces d’inertie et de rigidité

Finertie ≈ ρu2S, et Frigidité ≈ KsS, (2.81)

mais aussi des contraintes puisque σ = F/S

σinertie ≈ ρu2, et σrigidité ≈ Ks. (2.82)
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Le nombre de Mach exprime ainsi le rapport entre les effets d’inertie et de rigidité, soit

M2 ≈ σinertie
σrigidité

. (2.83)

L’écoulement est compressible lorsque les forces d’inertie dominent les forces élastiques responsables de
la propagation des ondes de pression.

2.4 Propriétés thermodynamiques des gaz parfaits

2.4.1 Définition
Si les atomes ou molécules composant le fluide sont suffisamment éloignées les uns des autres pour

négliger leur interaction et que leur énergie se présente uniquement sous forme cinétique, la théorie
cinétique des gaz montre que l’état thermodynamique d’un gaz parfait (ideal gas en anglais) répond à
l’équation

p = nkT =

(
n

NA
M
)(

kNA
M

)
T = ρrT, (2.84)

couramment appelée équation d’état des gaz parfaits. Les différents termes de cette équation sont les
suivants

n : nombre de particules (atomes, molécules) [m−3]
par unité de volume

k : constante de Boltzmann 1.3806488 · 10−23 [J ·K−1]
R = kNA : constante des gaz parfaits 8.3144621 [J ·K−1 ·mol−1]
M : masse molaire [kg ·mol−1]
NA : constante d’Avogadro 6.02214129 · 1023 [mol−1]
n
NA
M = ρ : masse volumique [kg ·m−3]

r = RM : constante molaire des gaz parfaits [J · kg−1 ·K−1]

Cette définition est équivalente à l’équation générale (2.73), qui est rappelée ici

dρ

ρ
= α

T
dp− βp dT = (α

T
· p) dp

p
− (βp · T )

dT

T
, (2.85)

car pour un gaz parfait les coefficients α
T

et βp peuvent être facilement évalués

α
T
· p = 1, βp · T = 1, (2.86)

ce qui met l’équation originale (2.85) sous la forme

dρ

ρ
=
dp

p
− dT

T
, (2.87)

qui n’est rien d’autre que la loi des gaz parfaits écrite sous forme différentielle.

2.4.2 Conséquences de l’équation des gaz parfaits
Energie interne et enthalpie

A partir des relations thermodynamiques suivantes choisies parmi celles obtenues précédemment(
∂h

∂p

)
T

=
1

ρ
+
T

ρ2

[(
∂ρ

∂T

)
p

]
, (2.88)

(
∂e

∂ρ

)
T

=
1

ρ2

[
p− T

(
∂p

∂T

)
ρ

]
. (2.89)
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et dans le cas d’un gaz parfait, l’utilisation de l’équation d’état (2.84) permet l’évaluation des différents
termes. Les relations précédentes donnent respectivement les résultats(

∂h

∂p

)
T

= 0, (2.90)(
∂e

∂ρ

)
T

= 0. (2.91)

Par conséquent, pour les gaz parfaits, l’enthalpie h et l’énergie interne e sont uniquement fonctions de la
température. Ainsi

e = e(T ) et h = h(T ). (2.92)

Variation de l’énergie interne

Etant donné que pour un gaz parfait l’énergie interne n’est fonction que de la température (2.92), il
est possible d’écrire

de =

(
∂e

∂ρ

)
T

dρ+

(
∂e

∂T

)
ρ

dT =

(
∂e

∂T

)
ρ

dT. (2.93)

De plus, à l’aide de la définition de la chaleur spécifique à volume constant (2.22), une simple intégration
donne

e =

∫
cv(T )dT + const, (2.94)

qui, pour une transformation à cv constant, devient

e = cvT + const. (2.95)

Variation de l’enthalpie

Comme pour un gaz parfait l’enthalpie n’est fonction que de la température (2.92), il est possible
d’écrire

dh =

(
∂h

∂p

)
T

dp+

(
∂h

∂T

)
p

dT =

(
∂h

∂T

)
p

dT. (2.96)

De plus, à l’aide de la définition de la chaleur spécifique à pression constante (2.27), une simple intégration
donne

h =

∫
cp(T )dT + const, (2.97)

qui, pour une transformation à cp constant, devient

h = cpT + const. (2.98)

Un gaz pour lequel cv et cp sont indépendants de la température (sur une certaine plage de tempé-
rature) est dit gaz parfait à chaleurs spécifiques constantes (un tel gaz est dit, en anglais, perfect gas ou
encore, thermally and calorically perfect gas).

Chaleurs spécifiques

La différence entre les chaleurs spécifiques à pression et à volume constant a été exprimée à la relation
(2.28). Avec le résultat (2.92) et l’équation d’état (2.84), la relation de Meyer est obtenue

cp − cv =
[
v −

(
∂h

∂p

)
T

](
∂p

∂T

)
v

= v

(
∂p

∂T

)
v

= r. (2.99)

Après division par cp
1− cv

cp
=

r

cp
, (2.100)

puis avec le rapport des chaleurs spécifiques γ, il vient

cp =
γr

γ − 1
et cv =

r

γ − 1
. (2.101)

L’Annexe C présente une étude approfondie de l’influence de la température sur les chaleurs spéci-
fiques et le rapport des chaleurs spécifiques.
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Variation d’entropie avec s = s(p, T )

Pour des systèmes simples, il est toujours possible d’écrire des relations de la forme

ds =

(
∂s

∂p

)
T

dp+

(
∂s

∂T

)
p

dT. (2.102)

Les relations thermodynamiques (2.41) et (2.42) évaluées avec l’équation d’état (2.84) deviennent(
∂s

∂p

)
T

= − v
T

et

(
∂s

∂T

)
p

=
cp
T
. (2.103)

Après insertion de ces relations dans (2.102) et utilisation de l’équation d’état, l’entropie devient

s =

∫
cp
dT

T
− r ln(p) + const, (2.104)

qui, pour une transformation définie à cp constant, devient

∆s = cp ln

(
T2
T1

)
− r ln

(
p2
p1

)
. (2.105)

Variation d’entropie avec s = s(v, T )

Pour des systèmes simples, il est toujours possible d’écrire des relations de la forme

ds =

(
∂s

∂v

)
T

dv +

(
∂s

∂T

)
v

dT. (2.106)

Les relations thermodynamiques (2.55) et (2.56) évaluées avec l’équation d’état (2.84) deviennent(
∂s

∂v

)
T

=
p

T
et

(
∂s

∂T

)
v

=
cv
T
. (2.107)

Après insertion de ces relations dans (2.106) et utilisation de l’équation d’état, l’entropie devient

s =

∫
cv
dT

T
+ r ln(v) + const, (2.108)

qui, pour une transformation définie à cv constant, devient

∆s = cv ln

(
T2
T 1

)
+ r ln

(
v2
v1

)
. (2.109)

2.4.3 Transformation isentropique

Pour un gaz parfait à chaleurs spécifiques constantes, la relation (2.109) devient, en utilisant la
relation (2.101) pour cv,

∆s =
r

γ − 1
ln

(
T2
T1

)
+ r ln

(
v2
v1

)
, (2.110)

soit,
1

r
∆s = ln

(
T2
T1

) 1
γ−1

+ ln

(
v2
v1

)
. (2.111)

Une transformation isentropique, c’est-à-dire adiabatique et réversible, correspond à ∆s = 0. La substi-
tution de cette condition dans la relation précédente mène à

ln

(
T2
T1

) 1
γ−1

+ ln

(
v2
v1

)
= 0, (2.112)
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ce qui s’écrit aussi sous la forme (
v2
v1

)
=

(
T2
T1

) 1
1−γ

. (2.113)

Avec l’équation des gaz parfaits, les relations deviennent(
p2
p1

)
=

(
T2
T1

) γ
γ−1

et

(
p2
p1

)
=

(
v2
v1

)−γ

, (2.114)

puis avec v = 1/ρ l’expression suivant est obtenue, souvent appelée relation isentropique

p = const · ργ . (2.115)

2.4.4 Vitesse du son
Dans le cas d’un gaz parfait, l’équation d’état permet d’évaluer la vitesse du son explicitement en

fonction de variables d’état. En effet, à partir de la relation isentropique (2.115)(
∂p

∂ρ

)
s

= const · γργ−1 = γ
const · ργ

ρ
= γ

p

ρ
, (2.116)

et avec l’équation d’état

a2 =

(
∂p

∂ρ

)
s

= γrT. (2.117)

Il est à remarquer que (
∂p

∂ρ

)
T

= rT =
p

ρ
. (2.118)

d’où la relation suivante est déduite (
∂p

∂ρ

)
s

= γ

(
∂p

∂ρ

)
T

. (2.119)

Cette relation (2.119) est en fait générale pour tout fluide simple, pas simplement un gaz parfait.
La vitesse du son est donc une propriété du fluide par l’intermédiaire des grandeurs r et γ, et dépend

de la température T (également à travers γ).

2.4.5 Compressibilité d’un gaz parfait en écoulement isentropique
A partir de l’équation (2.77) pour un écoulement isentropique

dρ

ρ
=

p

ρa2
dp

p
(2.120)

et les relations p = ρrT et a2 = γrT
dρ

ρ
=

1

γ

dp

p
(2.121)
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Chapitre 3

Equations fondamentales

Pour les écoulements incompressibles, les variables indépendantes sont la pression p et la vitesse u.
Par conséquent, seules les équations de conservation de la quantité de mouvement et de la masse sont
nécessaires.

Pour les écoulements compressibles, la masse volumique ρ est variable. Il est ainsi nécessaire d’in-
troduire une équation de conservation supplémentaire : l’équation d’énergie. En plus de la masse volu-
mique, l’équation de conservation de l’énergie fait intervenir de nouvelles variables : l’énergie interne e
(ou l’enthalpie h) et la température T . Par conséquent, il est nécessaire d’inclure deux autres équations
thermodynamiques, dites constitutives, pour la fermeture du système d’équation. Une équation, dite
équation d’état, relie généralement trois variables d’état facilement mesurables, telles la pression p, la
température T , et la masse volumique ρ. La deuxième équation relie l’énergie e (ou l’enthalpie h) à deux
autres variables d’états, généralement mesurables.

En résumé, les variables nécessaires pour l’étude des écoulements compressibles sont au nombre de
sept p, u, e, ρ et T . Il y a donc les cinq équations de conservation (masse, quantité de mouvement,
énergie) et les deux équations constitutives (équation d’état, relation thermodynamique).

3.1 Equations de conservation

3.1.1 Conservation de la masse
Formulation intégrale

L’équation de la conservation de la masse traduit l’équilibre entre la variation temporelle de masse
volumique à l’intérieur d’un volume V (choisi fixe, c’est à dire ne dépendant pas du temps) et son débit
à travers la surface S de ce volume. Sous forme intégrale l’équation s’écrit

∂

∂t

∫
V

ρ dV +

∫
S

n̂ · (ρu) dS = 0, (3.1)

et à l’aide du théorème de la divergence (et de l’hypothèse que le volume est fixe)∫
V

[
∂ρ

∂t
+∇ · (ρu)

]
dV = 0. (3.2)

Formulation différentielle

Comme (3.2) doit s’annuler quel que soit le volume V sur lequel porte l’intégrale, l’intégrant doit
forcément être nul. L’équation de conservation de la masse peut être formulée sous forme différentielle

∂ρ

∂t
+∇ · (ρu) = 0, (3.3)

qui représente la forme locale de (3.2).

3.1.2 Conservation de la quantité de mouvement
Formulation intégrale

Le principe de conservation de la quantité de mouvement stipule que la variation temporelle de
cette grandeur est égale à la somme des forces. Ici, la somme de la variation temporelle de quantité de
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mouvement à l’intérieur du volume V et son flux à travers la surface S est égale à la somme des forces
surfaciques et volumiques

∂

∂t

∫
V

ρu dV +

∫
S

n̂ · (ρuu) dS =

∫
S

n̂ ·Σ dS +

∫
V

ρf dV, (3.4)

où Σ représente le tenseur des contraintes et f le vecteur des forces volumiques. Il est utile de décomposer
le tenseur des contraintes comme la somme d’un tenseur ne faisant intervenir que la pression p et un
tenseur des contraintes visqueuses T dépendant du mouvement du fluide

Σ = −pI+ T. (3.5)

où I est le tenseur identité. Le théorème de la divergence permet de transformer l’intégrale surfacique
(avec l’hypothèse d’un volume fixe)∫

V

[
∂ρu

∂t
+∇ · (ρuu)

]
dV =

∫
V

∇ ·Σ dV +

∫
V

ρf dV, (3.6)

où uu représente un tenseur dyadique (que l’on représente souvent, et lourdement, comme un produit
tensoriel u⊗ u) et

∇ ·Σ = −∇p+∇ · T. (3.7)

Pour un écoulement sans forces visqueuses, ce terme s’écrit

∇ ·Σ = −∇p (3.8)

tandis que pour un écoulement sans contraintes visqueuses

Σ = −pI, (3.9)

ce qui représente la loi de comportement d’un fluide parfait.
La distinction doit être faite entre un fluide parfait et un écoulement sans forces visqueuses. Par

exemple, l’écoulement potentiel (c’est à dire sans vorticité, pour lequel le vecteur vitesse peut s’écrire
comme le gradient d’un potentiel) d’un écoulement incompressible à viscosité constante est un écoulement
sans forces visqueuses, même si le fluide est visqueux. Dans la majorité des cas pour ce cours, seuls les
écoulements de fluides parfaits seront traités.

Ainsi, pour le cas de fluides parfaits (ou des écoulements sans forces visqueuses), les formulations
générales de conservation de la quantité de mouvement (3.4) et (3.6) deviennent respectivement

∂

∂t

∫
V

ρu dV +

∫
S

n̂ · (ρuu) dS = −
∫
S

pn̂ dS +

∫
V

ρf dV, (3.10)

et ∫
V

[
∂ρu

∂t
+∇ · (ρuu)

]
dV = −

∫
V

∇p dV +

∫
V

ρf dV. (3.11)

Formulation différentielle

Comme (3.6) doit être vérifiée quel que soit le volume V sur lequel porte l’intégrale, la somme des
intégrants du membre de droite doit être égale à celle du membre de gauche. L’équation de conservation
de la quantité de mouvement peut être formulée sous forme différentielle

∂ρu

∂t
+∇ · (ρuu) = ∇ ·Σ+ ρf = −∇p+∇ · T+ ρf , (3.12)

laquelle, avec la loi pour un écoulement sans forces visqueuses (3.8) ou pour un fluide parfait (3.9), s’écrit

∂ρu

∂t
+∇ · (ρuu) = −∇p+ ρf , (3.13)

qui représente la forme locale de (3.11).
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Formulation d’Euler

Dans le cas d’un écoulement sans forces visqueuses, il est possible d’obtenir une autre formulation
de la conservation de la quantité de mouvement, qui porte le nom d’équations d’Euler. Les termes du
membre de gauche de (3.13) peuvent être développés pour faire apparaître

u

[
∂ρ

∂t
+∇ · (ρu)

]
+ ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+ ρf , (3.14)

où le premier terme du membre de gauche s’annule de par l’équation de conservation de la masse (3.3).
Ainsi, les équations d’Euler s’écrivent sous la forme

ρ
Du

Dt
= −∇p+ ρf . (3.15)

Formulation de Lamb

Avec la relation vectorielle

u ·∇u = ∇u2

2
− u ∧ (∇ ∧ u) = ∇u2

2
− u ∧ ω, (3.16)

où u2 = u · u, et ω est le vecteur tourbillon, vorticité, ou rotationnel du vecteur vitesse

ω = ∇ ∧ u, (3.17)

l’équation d’Euler (3.15) peut s’écrire sous la forme de Lamb

∂u

∂t
− u ∧ ω = −1

ρ
∇p−∇u2

2
+ f . (3.18)

Formulation de Crocco

Cette formulation est obtenue à partir de la relation de Gibbs (2.36)

1

ρ
dp = dh− Tds. (3.19)

Les différentielles totales peuvent être développées en fonction des variables spatiales(
1

ρ
∇p−∇h+ T∇s

)
· dx = 0. (3.20)

Par suite, indépendamment de dx, distance entre deux points de l’espace, cette équation devient

1

ρ
∇p = ∇h− T∇s, (3.21)

qui permet d’obtenir avec l’expression (3.18) la formulation de Crocco pour la conservation de la quantité
de mouvement

∂u

∂t
− u ∧ ω = −∇h0 + T∇s+ f , (3.22)

où h0 est l’enthalpie de réservoir, de stagnation, ou d’arrêt, définie comme

h0 ≡ h+
u2

2
. (3.23)

Si la force volumique f peut s’écrire comme le gradient d’un potentiel −∇ϕ, alors l’enthalpie totale est
définie comme

ht ≡ h+
u2

2
+ ϕ = h0 + ϕ. (3.24)

En dynamique des gaz, les forces volumiques sont souvent négligeables, et l’enthalpie d’arrêt est souvent
appelée enthalpie totale.
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L’équation de Crocco sous la forme

∇h0 = −∂u
∂t

+ u ∧ ω + T∇s+ f , (3.25)

devient alors selon les hypothèses :

Permanent ∇h0 = u ∧ ω + T∇s+ f

Sans forces volumiques ∇h0 = u ∧ ω + T∇s

Isentropique ∇h0 = u ∧ ω

Irrotationnel ∇h0 = 0 −→ h0 = const

Dans ce dernier cas l’enthalpie de stagnation h0 est une constante dans tout l’écoulement.
Lorsque l’écoulement est rotationnel, il est possible de projeter la relation ∇h0 = u∧ω le long d’une

ligne de courant de vecteur unitaire ℓ̂ = u/u, de sorte que ℓ̂ · (u ∧ω) = 0 et ℓ̂ ·∇h0 = 0. Dans ce cas de
figure, l’enthalpie de réservoir est constante le long d’une ligne de courant, et la constante change pour
chaque ligne de courant.

3.1.3 Conservation de l’énergie
Formulation intégrale

Comme dans le cas du premier principe de la thermodynamique, l’équation d’énergie traduit le
principe général de la conservation de l’énergie, c’est-à-dire que la quantité totale d’énergie est constante
mais qu’elle peut être transférée ou transformée. Ici, l’équation d’énergie stipule que la somme de l’énergie
contenue dans le volume V et de son flux à travers la surface de ce volume est égale aux différentes sources
d’énergie. Les sources sont le travail des force de surface, le travail de forces de volume, le transfert de
chaleur q et le rayonnement r. Ceci s’exprime par

∂

∂t

∫
V

ρe0 dV +

∫
V

∇ · (ρe0u) dV =

∫
V

∇ · (Σ · u) dV +

∫
V

ρ (f · u) dV −
∫
V

∇ · q dV +

∫
V

r dV, (3.26)

où
e0 ≡ e+

1

2
u2 (3.27)

est l’énergie de stagnation (avec u2 = u · u). Pour un fluide parfait, le travail des forces de contact se
réduit à celui des forces de pression en vertu de (3.9), soit

∂

∂t

∫
V

ρe0 dV +

∫
V

∇ · (ρe0u) dV = −
∫
V

∇ · (pu) dV +

∫
V

ρ (f · u) dV −
∫
V

∇ · q dV +

∫
V

r dV. (3.28)

Formulation différentielle

Comme (3.28) doit être vérifiée quel que soit le volume V sur lequel porte l’intégrale, la somme des
intégrants du membre de droite doit être égale à celle du membre de gauche. L’équation de conservation
de l’énergie peut être alors formulée sous forme différentielle

ρ
De0
Dt

=
∂ (ρe0)

∂t
+∇ · (ρe0u) = ∇ · (Σ · u) + ρ (f · u)−∇ · q+ r, (3.29)

ou
ρ
De0
Dt

=
∂ (ρe0)

∂t
+∇ · (ρe0u) = −∇ · (pu) +∇ · (T · u) + ρ (f · u)−∇ · q+ r, (3.30)

et pour un fluide parfait

ρ
De0
Dt

=
∂ (ρe0)

∂t
+∇ · (ρe0u) = −∇ · (pu) + ρ (f · u)−∇ · q+ r, (3.31)

ce qui représente la forme locale de (3.28).
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Enthalpie

L’enthalpie peut être introduite par l’intermédiaire de sa définition h = e+pv, ou, en terme de valeurs
de stagnation

h0 = h+
1

2
u2 = (e+ pv) +

1

2
u2 = (e+

1

2
u2) + pv = e0 + pv. (3.32)

Ainsi
∂ (ρe0)

∂t
+∇ · (ρe0u) =

∂ (ρh0)

∂t
+∇ · (ρh0u)−

∂p

∂t
−∇ · (pu) , (3.33)

ce qui donne

ρ
Dh0
Dt

=
∂ (ρh0)

∂t
+∇ · (ρh0u) =

∂p

∂t
+∇ · (pu) +∇ · (Σ · u) + ρ (f · u)−∇ · q+ r (3.34)

ou
ρ
Dh0
Dt

=
∂ (ρh0)

∂t
+∇ · (ρh0u) =

∂p

∂t
+∇ · (T · u) + ρ (f · u)−∇ · q+ r (3.35)

Pour un fluide parfait

ρ
Dh0
Dt

=
∂ (ρh0)

∂t
+∇ · (ρh0u) =

∂p

∂t
+ ρ (f · u)−∇ · q+ r, (3.36)

Entropie

La relation suivante, obtenue à partir de l’équation de conservation de mouvement,

ρ
D

Dt
(
1

2
u2) = (∇ ·Σ) · u+ ρf · u. (3.37)

permet de ré-écrire les équations de conservation d’énergie et d’enthalpie sous la forme

ρ
De

Dt
=
∂ (ρe)

∂t
+∇ · (ρeu) = −p∇ · u+ T : ∇u−∇ · q+ r, (3.38)

ρ
Dh

Dt
=
∂ (ρh)

∂t
+∇ · (ρhu) = Dp

Dt
+ T : ∇u−∇ · q+ r, (3.39)

où il a été fait usage de l’identité suivante

T : ∇u = ∇ · (T · u)− (∇ · T) · u. (3.40)

Le terme T : ∇u, la double contraction du tenseur des contraintes visqueuses et du gradient de vitesse
(un tenseur également), s’appelle la fonction de dissipation visqueuse, qui est toujours positive ou nulle.
Ainsi les forces visqueuses entraînent toujours un accroissement de l’énergie interne et de l’enthalpie.

Afin d’obtenir une équation de conservation pour l’entropie, il suffit d’introduire la relation de Gibbs
de = Tds− pdv ou dh = Tds+ vdp dans les équations précédentes

ρT
Ds

Dt
= T

[
∂ (ρs)

∂t
+∇ · (ρsu)

]
= T : ∇u−∇ · q+ r. (3.41)

Pour un fluide parfait et pour un écoulement adiabatique et sans rayonnement,

Ds

Dt
= 0, (3.42)

ce qui traduit le fait que l’entropie reste invariante en suivant une particule de fluide. En écoulement
permanent, l’entropie est constante le long d’une ligne de courant.

3.2 Equations d’état
Les équations de conservation de la masse, de quantité de mouvement et d’énergie forment un système

de 5 équations avec les sept inconnues p, ρ, u, T , et e (ou h). La fermeture du système d’équations requiert
l’ajout de deux équations d’état.
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3.2.1 Equation d’état reliant p, T , et ρ

Si le fluide est parfait, l’équation d’état prend la forme simple (2.84)

p = ρrT. (3.43)

Pour un fluide quelconque, l’équation d’état sous forme plus générale (2.73) doit être utilisée

dρ

ρ
= α

T
dp− βp dT = (α

T
· p) dp

p
− (βp · T )

dT

T
. (3.44)

3.2.2 Equation d’état pour e ou h

Pour un gaz parfait, l’énergie est définie en fonction de la température par la relation intégrale

e =

∫
cv (T ) dT + const. (3.45)

En adoptant l’hypothèse que cv est indépendant de la température (gaz calorifiquement parfait), cette
relation se simplifie sous la forme

e = cvT + const. (3.46)

Dans le cadre d’écoulements de fluides, l’enthalpie h apparaît comme une variable naturelle. De manière
similaire

h =

∫
cp (T ) dT + const. (3.47)

et avec l’hypothèse que cp est indépendant de la température (gaz calorifiquement parfait)

h = cpT + const. (3.48)

Pour un fluide quelconque, l’énergie et l’enthalpie peuvent être exprimées en fonction de deux variables
d’état, comme par exemple les relations (2.52) et (2.38) qui sont rappelées ici

de =

(
∂e

∂T

)
v

dT +

(
∂e

∂v

)
T

dv = cvdT +

(
∂e

∂v

)
T

dv (3.49)

dh =

(
∂h

∂T

)
p

dT +

(
∂h

∂p

)
T

dp = cpdT +

(
∂h

∂p

)
T

dp (3.50)

Avec le résultat (2.44) qui est rappelé ici(
∂h

∂p

)
T

=
1

ρ
(1− βp · T ), (3.51)

il est alors possible d’écrire

dh = cpdT +
1

ρ
(1− βp · T )dp. (3.52)

En particulier, pour un gaz parfait, βp · T = 1.
Cette relation peut être ré-écrite en fonction d’un autre paramètre, le coefficient de Joule-Tompson

µ
JT

, déjà introduit au Chapitre précédent, mesurable expérimentalement, et servant à caractériser les
gaz non parfaits, défini par

µ
JT
≡
(
∂T

∂p

)
h

. (3.53)

Il a été démontré (
∂h

∂p

)
T

= −µ
JT
· cp (3.54)

ce qui donne une version alternative de l’équation d’état générale pour l’enthalpie h

dh = cp(dT − µJT
dp) (3.55)

En particulier, pour un gaz parfait, µ
JT

= 0
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3.3 Sens physique de la vitesse du son
La vitesse du son est une propriété variable d’un milieu puisque nous avons vu qu’elle dépend, dans

le cas d’un gaz parfait, de sa température (2.117)

a2 =

(
∂p

∂ρ

)
s

= γrT =
γp

ρ
, (3.56)

où les deux dernières égalités sont obtenues en utilisant la relation des gaz parfaits (2.84). Considèrons
un gaz au repos ou en translation uniforme p = p0 et ρ = ρ0. Créons-y une petite perturbation et
étudions son déplacement suivant une direction, par exemple x. Cette perturbation peut être considérée
comme due à la création dans un plan d’une petite vitesse initiale u et d’une petite variation de pression
p′ générant une petite fluctuation ρ′ de la masse volumique. Ces grandeurs étant les mêmes dans le
plan perpendiculaire à la direction x. Nous admettrons que l’écoulement est irrotationnel et adiabatique
ainsi que des transformations réversibles. Les variables dépendantes ne seront fonctions que de x et de t.
Considérons alors les équations de conservation avec les hypothèses précédentes

∂ρ

∂t
+
∂ρu

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
,

p = kργ .

(3.57)

Eliminons la pression entre l’équation de conservation de la quantité de mouvement et de l’énergie (3.57).
Pour cela, dérivons tout d’abord l’équation d’énergie de manière à obtenir

∂p

∂x
= kγργ−1 ∂ρ

∂x
= γ

p

ρ

∂ρ

∂x
, (3.58)

ainsi l’équation de conservation de la quantité de mouvement devient

∂u

∂t
+ u

∂u

∂x
= −γ p

ρ2
∂ρ

∂x
. (3.59)

Définissons les petites perturbations de la masse volumique par ρ′

ρ0
= ε, la masse volumique s’écrit alors

ρ = ρ0 + ρ′ = ρ0

(
1 +

ρ′

ρ0

)
= ρ0 (1 + ε) . (3.60)

Etant donné que nous considérons un fluide au repos ou en translation uniforme ainsi que de faibles
perturbations, les effets d’inertie peuvent être négligées. En d’autres termes, nous avons∣∣∣∣u∂u∂x

∣∣∣∣≪ ∣∣∣∣∂u∂t
∣∣∣∣ . (3.61)

Les équations de conservation de la masse et de la quantité de mouvement (3.57) deviennent à l’aide de
(3.59), (3.60) et (3.61) et en négligeant les infiniments petits du second ordre

∂u

∂x
+
∂ε

∂t
= 0,

∂u

∂t
+
γp0
ρ0

∂ε

∂x
= 0,

(3.62)

Nous éliminons alors ε des relations (3.62) en dérivant la première par rapport à l’espace et la seconde
par rapport au temps 

∂2ε

∂t∂x
+
∂2u

∂x2
= 0,

∂2u

∂t2
+
γp0
ρ0

∂2ε

∂t∂x
= 0.

(3.63)
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En utilisant la vitesse du son (3.56), l’élimination des termes en ε des relations précédentes donne

∂2u

∂t2
− a20

∂2u

∂x2
= 0, (3.64)

couramment appelée équation de d’Alembert ou des cordes vibrantes. Sa solution générale est de la
forme,

u = F (x− a0t) +G(x+ a0t), (3.65)

comprenant ainsi une onde progressive se propageant à la vitesse a0 suivant le sens positif de l’axe des x
et une onde rétrograde se propageant à la même vitesse selon le sens négatif de x. Considérons seulement
l’onde progressive

u = F (x− a0t), (3.66)

ce qui nous permet d’écrire
∂u

∂x
= F ′ et

∂u

∂t
= F ′a0. (3.67)

A l’aide de ce résultat, nous pouvons ré-interpréter l’hypothèse (3.61) de la manière suivante

|uF ′| ≪ |F ′a0| , (3.68)

en d’autres termes
|u| ≪ |a0| . (3.69)

Il faut donc que la vitesse induite par la perturbation soit très inférieure à la vitesse de propagation de
cette perturbation.

Remarque Si l’on avait éliminé la vitesse u, on aurait pu obtenir en tenant compte de la définition de
ε et de la relation liant la pression et la masse volumique

∂2ρ′

∂t2
− a20

∂2ρ′

∂x2
= 0, (3.70)

ou
∂2p′

∂t2
− a20

∂2p′

∂x2
= 0. (3.71)



Chapitre 4

Principes fondamentaux des écoulements
isentropiques permanents

Ce chapitre présente les principes fondamentaux des écoulements isentropiques en régime permanent.
Les résultats obtenus seront très instructifs par leur simplicité pour la connaissance des effets essentiels
de compressibilité dans un écoulement. Ils ont l’avantage de mettre en évidence les grands phénomènes
qui sont les conséquences des effets de la compressibilité. Du fait de leur isentropie, les écoulements seront
adiabatiques et dénués de viscosité, et de plus, ne seront pas soumis à des forces volumiques.

4.1 Ondes de Mach

Les ondes de Mach sont des ondes isentropiques apparaissant dans un écoulement supersonique. En
particulier, une onde de Mach n’est pas une onde de choc (qui elle génère de l’entropie). Une onde de
Mach se décrit facilement par l’intermédiaire d’un schéma, introduit pour la première fois par Ernst
Mach lui-même (1887), et devenu depuis très populaire.

Le principe de base est qu’une onde de pression d’amplitude infinitésimale par rapport à la pression
ambiante se propage à une vitesse égale à la vitesse du son dans un milieu au repos (voir la discussion
dans le Chapitre 3 sur les ondes acoustiques). Si le milieu est en mouvement par rapport à la source,
l’onde se propagera toujours avec la même vitesse par rapport au fluide (cette fois-ci en mouvement).

Le schéma ci-après illustre ce concept pour une onde uni-dimensionnelle dans une conduite dans
laquelle s’écoule un fluide. La conduite est tapotée à intervalles réguliers avec un petit marteau, produisant
donc des pulsations acoustiques dans la conduite avec une vitesse

uonde = U ± a, (4.1)

où U est la vitesse de l’écoulement dans la conduite, a la vitesse du son (par rapport au fluide), et uonde
la vitesse de l’onde dans un référentiel fixe par rapport à la conduite.

Sans écoulement, l’onde se propage symétriquement de part et d’autre de la conduite. Pour une vitesse
d’écoulement dans la conduite inférieure à la vitesse du son (écoulement subsonique), l’onde est portée
plus dans le sens de l’écoulement (aval) que dans le sens contraire (amont). Pour un écoulement super-
sonique, l’onde ne réussit pas à se propager en aval. Cet exemple simple illustre le principe fondamental
des écoulements compressibles, que l’influence de perturbations en amont d’un écoulement diminue avec
l’accroissement du nombre de Mach M , défini comme le rapport entre la vitesse de l’écoulement et la
vitesse du son

M =
U

a
. (4.2)

Dans un contexte tridimensionnel, une source émet à intervalles réguliers une pulsation acoustique
se propageant dans un milieu au repos (air ambiant par exemple). Thompson (1972) utilise l’image d’un
bourdon, pour lequel les pulsations périodiques peuvent correspondre au battement régulier des ailes du
bourdon.

Cette image, qui illustre bien le principe, ne doit cependant pas suggérer qu’une pulsation est né-
cessaire : tout corps se déplaçant dans un fluide génère un champ de pression qui est établi lors du
mouvement du corps par un spectre continu d’ondes de pressions se propageant à la vitesse du son
par rapport au fluide au repos. Ceci revient à remplacer la pulsation unique par une somme infinie (ou
intégrale) de composantes spectrales (de Fourier) décrivant ainsi le champ de pression.

Quand le bourdon est stationnaire, il émet des ondes acoustiques sphériques centrées sur le bourdon,
se propageant à une vitesse a par rapport au milieu.
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Figure 4.1 – Ondes dans un écoulement à l’arrêt, subsonique, et supersonique selon Thompson (1972)

Quand le bourdon se déplace avec une vitesse U , les ondes maintiennent une configuration sphérique
avec un rayon proportionnel à l’intervalle de temps entre l’instant d’émission et l’instant considéré. En
fonction du temps, le centre géométrique de chaque onde reste fixe par rapport au milieu au repos et
coïncide avec la position du bourdon au moment de l’émission de l’onde en question.

Quand le bourdon se déplace à une vitesse U inférieure à la vitesse de propagation a des ondes
(nombre de Mach inférieur à l’unité, M = U/a < 1), le bourdon ne rattrape jamais les ondes qu’il a
émises. A un instant donné (t = 3∆t), la configuration de toutes les ondes a l’aspect schématisé sur la
Figure 4.2. Le bourdon se trouve alors en position 3. Les ondes ont été émises à intervalles réguliers ∆t.
L’onde centrée en 0 a été émise à t = 0 et son front s’est propagé sur une distance 3a∆t. De même,
l’onde centrée en 1 (ou 2) a été émise quand le bourdon se trouvait en position 1 (ou 2), et à l’instant
donné t = 3∆t, son front s’est propagé à une distance 2a∆t (ou a∆t).

Quand le bourdon se déplace à une vitesse U supérieure à la vitesse de propagation a des ondes
(nombre de Mach supérieur à l’unité M = U/a > 1), le bourdon dépasse systématiquement le front
de l’onde émise. La configuration des ondes à un instant donné (t = 3∆t) a alors l’aspect schématisé
sur la Figure 4.2. Une zone conique se dessine alors de manière naturelle. De simples considérations
géométriques montrent que ce cône a pour demi-angle µ donné par

sinµ =
a∆t

U∆t
=

2a∆t

2U∆t
=

3a∆t

3U∆t
= . . . (4.3)

ou

µ = sin−1 1

M
. (4.4)

La surface de ce cône est ce que l’on appelle une onde de Mach (Mach wave en anglais). On rencontre
parfois le terme ligne de Mach, terme restrictif qui ne s’applique qu’au cas où l’onde est rectiligne (dans
un champ où le nombre de Mach est uniforme). En deux dimensions (bourdon cylindrique !), le cône de
Mach est remplacé par un triangle.

En dehors de ce cône, un observateur n’est pas conscient de la présence du bourdon : il s’agit de la
zone de silence. Ce n’est qu’au moment où l’observateur est traversé par l’onde de Mach qu’il deviendra
conscient de la présence du bourdon : il se trouvera alors dans la zone d’influence.

Il est à remarquer qu’un changement de repère Galiléen qui nous place dans un référentiel fixe par
rapport au bourdon ne change pas la configuration géométrique des ondes (le cône de Mach garde la
même ouverture). La différence vient de la présence d’un vent supersonique emportant ainsi les ondes
sphériques (et leur centre géométrique) dans le sens de son écoulement.
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(a)

(b)

Figure 4.2 – Ondes acoustiques se propageant avec la vitesse du son a et émises par une source se
déplaçant à vitesse (a) subsonique u < a, et (b) supersonique u > a.
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Si les ondes acoustiques sont isentropiques, l’onde de Mach est également isentropique (on remarque
sur le schéma que les ondes ne s’accumulent pas et donc que l’amplitude de pression reste similaire à
celle d’une onde simple). C’est cet aspect qui différencie les ondes de Mach des ondes de choc, qui elles
génèrent des différences de pression comparables à la pression du milieu ambiant. Une onde de Mach
est donc une onde émise par une source de pression de faible intensité, avec une amplitude largement
inférieure à la pression du milieu ambiant.

Il est important de remarquer que le bourdon (ou tout autre objet) supersonique génère un réseau
complexe d’ondes de choc et de détente dans la région en proximité du corps. A une distance grande par
rapport à la dimension du corps, les ondes de chocs et de détente interagissent pour former alors une
onde de Mach isentropique. Ainsi, l’onde de Mach peut être aussi vue comme la configuration d’ondes
d’un véhicule supersonique à une échelle largement supérieure à la dimension du corps (qui agit alors
comme une source acoustique de faible intensité à cette échelle). Le schéma sur la Figure 4.3 illustre ces
idées.

Figure 4.3 – Configuration d’ondes autour d’un corps non ponctuel (Thompson, 1972). Les ondes de
Mach sont en trait fin, les ondes de choc en trait lourd. Loin du corps, les ondes de choc interagissent
avec les ondes de Mach (contenues dans l’éventail de Prandtl-Meyer, fan sur le schéma) pour devenir
des ondes de Mach, en intensité et en direction. Ainsi, à une échelle largement supérieure à la taille du
corps, les ondes de chocs sont représentables par des ondes de Mach.

Physiquement, ces ondes peuvent être facilement rendues visibles dans un écoulement supersonique.
Il suffit de placer une pointe d’aiguille dans l’écoulement ou de créer une aspérité sur une paroi parallèle à
l’écoulement supersonique. La Figure 4.4 illustre ces ondes de Mach, générées par la faible épaisseur d’un
bout de scotch collé sur la paroi, et rendues visibles par une technique de Schlieren (qui sera présentée
dans un Chapitre ultérieur). Cette technique très simple permet d’ailleurs une évaluation du nombre de
Mach de l’écoulement en fonction d’une mesure de l’angle formé par l’onde de Mach avec la direction de
l’écoulement.

Une onde de Mach est également une représentation physique d’un objet mathématique que l’on
appelle caractéristique, un outil permettant la résolution d’équations différentielles de type hyperboliques
(décrivant les écoulements supersoniques). La méthode de résolution par caractéristiques se rencontrera
dans un Chapitre ultérieur.
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Figure 4.4 – Ondes de Mach dans une tuyère supersonique, générées par des bandes de scotch collées
sur la paroi (Noca 1989, California Institute of Technology)

4.2 Equations de conservation en écoulement isentropique

4.2.1 Conservation de la quantité de mouvement : relation de Bernoulli

Selon les hypothèses admises (fluide non visqueux et forces volumiques négligeables), l’équation de
conservation de la quantité de mouvement est celle d’Euler (3.15), soit

ρ
Du

Dt
= −∇p, (4.5)

qui, pour un écoulement permanent, devient

u ·∇u = ∇u2

2
− u ∧ (∇ ∧ u) = −1

ρ
∇p. (4.6)

Le terme de Lamb, u∧ (∇ ∧ u), contient le vecteur tourbillon ω = ∇∧u, qui est compliqué à traiter de
manière analytique. Comme le terme de Lamb est perpendiculaire au vecteur vitesse, une projection le
long d’une ligne de courant (partout tangente au vecteur unitaire ℓ̂ = u/u) permet de s’en débarrasser,
donnant ainsi

ℓ̂ ·∇u2

2
+

1

ρ
ℓ̂ ·∇p = 0, (4.7)

ou encore
d

dl

(
u2

2

)
+

1

ρ

dp

dl
= 0, (4.8)

que l’on peut écrire sous forme différentielle (le long d’une ligne de courant)

udu+
1

ρ
dp = 0, (4.9)

ou sous forme intégrée
u2

2
+

∫
1

ρ
dp = C, (4.10)

où C est une constante le long d’une ligne de courant. Cette relation représente la version compressible de
la relation de Bernoulli rencontrée en écoulements incompressibles. En particulier, si la masse volumique
est constante, l’intégrale peut être effectuée, et l’on retrouve bien la version familière de la relation de
Bernoulli, u2/2 + p/ρ0 = C.
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4.2.2 Conservation de l’énergie
Selon le Chapitre précédent, l’équation de conservation d’énergie peut s’écrire sous la forme (3.35),

et après application des hypothèses d’un fluide non visqueux, d’un écoulement adiabatique, et de forces
volumiques négligeables, prend la forme

Dh0
Dt

=
1

ρ

∂p

∂t
. (4.11)

Pour des écoulements permanents, l’équation devient

u · ∇h0 = 0, (4.12)

ce qui implique finalement

h0 = h+
u2

2
= C (4.13)

où C est une constante le long d’une ligne de courant. La version différentielle (le long d’une ligne de
courant) est

dh0 = dh+ udu = 0. (4.14)

4.2.3 Comparaison des deux équations
Pour un écoulement isentropique, l’équation de conservation de quantité de mouvement et l’équation

de conservation d’énergie sont redondantes. En effet, la relation de Gibbs dh = Tds+ vdp et la condition
d’isentropie ds = 0 montre immédiatement

dh = vdp =
1

ρ
dp, (4.15)

et qu’ainsi les deux Equations 4.9 et 4.14 sont identiques. La raison vient du fait que la condition
d’isentropie fixe une des variables d’état (l’entropie, s), et que l’on se retrouve alors avec une inconnue
de moins dans le problème, ce qui implique qu’une des deux équations est obligatoirement superflue.

4.3 Grandeurs caractéristiques d’un écoulement isentropique

4.3.1 Grandeurs d’arrêt, de réservoir, de stagnation, et totales
Une grandeur d’arrêt (ou de stagnation pour utiliser le terme anglais) est une grandeur définie en un

point d’arrêt de l’écoulement. Un point d’arrêt de l’écoulement est un point où la vitesse est nulle, dans
une configuration permanente et suite à un ralentissement (ou compression) isentropique de l’écoulement.
Les grandeurs d’arrêt sont dénotées avec un indice “0”. Ainsi, en un point d’arrêt, u = u0 = 0.

Si les énergies potentielles (gravité) sont nulles ou négligeables, les grandeurs d’arrêt peuvent être
assimilées à des valeurs totales (Chapitre 2). Très souvent en aérodynamique compressible, les grandeurs
totales et les grandeurs d’arrêt sont utilisées de manière interchangeable, car les forces volumiques sont
négligées.

Une valeur totale déjà rencontrée est l’enthalpie totale h0, qui correspond bien à la valeur de l’enthalpie
h pour u = 0 dans la relation 4.13. L’enthalpie totale h0 est donc constante le long d’une ligne de courant
pour un écoulement permanent et isentropique.

La température, pression, et masse volumique sont des fonctions d’état de deux variables d’état, que
l’on peut choisir comme étant l’enthalpie et l’entropie. Comme l’entropie est constante, les variables ne
sont plus fonction que de l’enthalpie. En particulier, à l’enthalpie totale h0 correspondra une pression
totale p0, une température totale T0, et une masse volumique ρ0, toutes définies comme étant les valeurs
pour une vitesse nulle de l’écoulement, pour autant que l’écoulement soit isentropique et permanent.

Par suite, le résultat précédent implique que la température T0 est constante le long d’une ligne de
courant pour un écoulement permanent et isentropique. Il en est de même pour la pression totale p0 (et
la masse volumique totale ρ0).

La température totale, T0, peut être également interprétée comme étant la température dans un
grand réservoir où la vitesse est nulle (u = 0) et servant à alimenter une tuyère (Figure 4.5). Pour cette
raison, T0 prend parfois le nom de température de réservoir (reservoir en anglais). Les autres grandeurs
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totales, en particulier p0 et ρ0, sont d’une manière analogue les valeurs de la pression et de la masse
volumique dans le réservoir.

Une manière alternative de retrouver ces grandeurs totales est par ralentissement isentropique de
l’écoulement jusqu’à atteindre une vitesse nulle, par exemple au niveau du “nez” d’un corps placé dans
l’écoulement (Figure 4.5). Ce point est appelé point d’arrêt, et la température sur le nez du corps porte
alors le nom de température d’arrêt (qui est identique à la température de réservoir servant à générer
l’écoulement). Comme l’écoulement est isentropique, la pression et masse volumique ne dépendent que
de la température. Ainsi, on définit également la pression totale p0 et masse volumique totale ρ0 comme
les valeurs de la pression et de la masse volumique au point d’arrêt.

Les grandeurs totales sont mesurables expérimentalement assez simplement. Dans un réservoir, où
la vitesse est nulle, de simple capteurs (de pression et de température) fournissent les valeurs désirées.
Au sein d’un écoulement, un capteur (de pression ou de température) basé au point d’arrêt fournira les
grandeurs totales. On parlera alors de capteur de pression totale et de température totale. Ce sujet sera
développé plus amplement dans le cas d’un gaz parfait ci-dessous.

Figure 4.5 – Grandeurs d’arrêt, de stagnation, ou de réservoir (ou totales, en absence de forces volu-
miques) définies comme étant les valeurs des variables thermodynamiques dans un réservoir alimentant
une tuyère, ou les valeurs en un point d’arrêt suite à un ralentissement ou une compression isentropique.

4.3.2 Grandeurs statiques

Les valeurs que l’on appelle statiques sont celles qui ne portent pas l’indice 0, telles p, T , et ρ.
Elles correspondent aux valeurs thermodynamiques mesurées par un observateur se déplaçant localement
avec l’écoulement (on peut imaginer l’observateur juché sur une montgolfière, entraînée librement par
l’écoulement). L’observateur, muni de simples capteurs, serait alors au repos par rapport au fluide, et
mesurerait ainsi les valeurs statiques de l’écoulement (le terme statique vient du fait que le fluide est au
repos par rapport à l’observateur). Dans la pratique, il n’est pas possible de déplacer l’observateur avec
l’écoulement. Une méthodologie simple pour la mesure de la pression statique est d’utiliser un orifice
dans une paroi placée parallèlement à l’écoulement.

4.3.3 Grandeurs soniques

Un point sonique d’un écoulement est un point où la vitesse est égale à la vitesse locale du son. Une
grandeur sonique est une grandeur définie en un point aux conditions soniques. Les grandeurs soniques
sont notées avec un “∗” en indice. En un point sonique, nous avons u = u∗ = a∗.
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4.4 Relation entre la vitesse et le nombre de Mach en écoulement
isentropique

La relation de conservation de quantité de mouvement sous forme différentielle

udu+
1

ρ
dp = 0, (4.16)

peut être modifiée par l’introduction de la vitesse du son a. Comme cette vitesse du son est une variable
d’état et que l’écoulement est isentropique, la pression est fonction de cette seule variable (ou de son
carré)

dp =

(
∂p

∂a2

)
s

da2. (4.17)

En utilisant le fait que

a2 =

(
∂p

∂ρ

)
s

=
−v2(
∂v

∂p

)
s

(4.18)

on trouve avec un peu d’algèbre (
∂a2

∂p

)
s

= 2v

[
a4

2v3

(
∂2v

∂p2

)
s

− 1

]
. (4.19)

Le terme au sein des parenthèses est une grandeur commune en écoulements compressibles et porte le
nom de dérivée fondamentale de la dynamique des gaz (fundamental gasdynamic derivative), dénotée
par le symbole Γ

Γ =
a4

2v3

(
∂2v

∂p2

)
s

. (4.20)

Sa valeur pour différents fluides est donnée dans le Tableau ci-dessous. L’équation de conservation de
quantité de mouvement prend alors la forme

udu+
ada

Γ− 1
= 0. (4.21)

En introduisant le nombre de Mach M = u/a écrit sous forme différentielle (par dérivée logarithmique)

dM

M
=
du

u
− da

a
, (4.22)

la relation 4.21 devient
du

u
=

dM/M

1 + (Γ− 1)M2
. (4.23)

Si Γ ≥ 1, cette relation nous dit que le nombre de Mach varie d’une manière monotone avec la vitesse
de l’écoulement (en particulier, si le nombre de Mach augmente, la vitesse aussi). Or, pour des fluides
ordinaires, cette condition est toujours satisfaite (Tableau ci-dessous).

Fluide Γ
Gaz Parfait (γ + 1)/2

Liquide de Tait (k + 1)/2
Eau 4.4

Ethanol 6.4

Table 4.1 – Valeurs de la dérivée fondamentale Γ à 1 Atm et 293.15 K.
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4.5 Ecoulement isentropique d’un gaz parfait

4.5.1 Conservation de quantité de mouvement : relation de Bernoulli
Pour un gaz calorifiquement parfait en écoulement isentropique, on utilise la relation p ∝ ργ , ce qui

transforme l’équation de conservation de quantité de mouvement 4.10

u2

2
+

γ

γ − 1

p

ρ
= C, (4.24)

qui représente la version compressible de la relation de Bernoulli pour un gaz parfait. Contrairement au
cas des écoulements incompressibles, la masse volumique est ici variable !

4.5.2 Conservation d’énergie
Comme remarqué précédemment, en écoulement isentropique, l’équation de conservation d’énergie et

de quantité de mouvement sont identiques. L’équation de conservation de quantité de mouvement peut
être ré-écrite en en fonction de la température (en faisant intervenir la loi des gaz parfaits)

u2

2
+

γr

γ − 1
T = C. (4.25)

En se souvenant que pour un gaz parfait cp = γr/(γ − 1), on obtient une version alternative

cpT +
u2

2
= C. (4.26)

Cette relation peut être obtenue directement à partir de l’équation de conservation d’énergie 4.13, puisque
pour un gaz calorifiquement parfait (cp = constante), et h = cpT+const, produisant un résultat identique
(Equation 4.26) à celui obtenu à partir de l’équation de conservation de quantité de mouvement.

4.5.3 Calcul des grandeurs statiques en fonction des grandeurs totales
La relation précédente (4.26) peut être ré-écrite en fonction de la température totale T0

cpT +
u2

2
= cpT0. (4.27)

laquelle, après avoir divisé les deux membres par cpT , devient

T0
T

= 1 +
u2

2cpT
, (4.28)

puis en introduisant la relation (2.101) pour cp ainsi que (2.117) pour la vitesse du son a

T0
T

= 1 +
γ − 1

2

(u
a

)2
= 1 +

γ − 1

2
M2, (4.29)

où la dernière égalité est obtenue par définition du nombre de Mach. Ensuite, en utilisant la relation
isentropique (2.115) ainsi que l’équation d’état, nous avons la relation

p0
p

=

(
ρ0
ρ

)γ
=

(
T0
T

) γ
γ−1

, (4.30)

qui permet d’obtenir avec (4.29) les relations suivantes

p0
p

=

(
1 +

γ − 1

2
M2

) γ
γ−1

, (4.31)

ρ0
ρ

=

(
1 +

γ − 1

2
M2

) 1
γ−1

. (4.32)
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Figure 4.6 – Illustration des relations isentropiques, avec γ = 1.4.

De manière équivalente, les relations peuvent être écrite comme suit :

T

T0
=

1

1 +
γ − 1

2
M2

,
p

p0
=

1(
1 +

γ − 1

2
M2

) γ
γ−1

,
ρ

ρ0
=

1(
1 +

γ − 1

2
M2

) 1
γ−1

. (4.33)

Nous constatons que pour un écoulement isentropique (pas de choc qui provoquerait une augmentation
d’entropie), les rapports T/T0, p/p0 et ρ/ρ0 ne dépendent que du nombre de Mach et des caractéristiques
du fluide (valeur de γ). L’utilisation des grandeurs totales est très utile lors de l’étude des écoulements
isentropiques.

En outre, la variation de la température, de la pression, et de la masse volumique est monotone avec
une variation du nombre de Mach. En particulier, ces trois grandeurs diminuent avec une augmentation
du nombre de Mach. Dans le Chapitre suivant, on observera ce phénomène dans le cas d’une tuyère
conçue pour augmenter le nombre de Mach. Ce même phénomène se produit sur l’extrados (partie
supérieure) d’un profil d’aile en écoulement transsonique : le nombre de Mach augmente (devenant parfois
supersonique) et la température décroît (conduisant ainsi parfois à un phénomène de condensation).

4.5.4 Formulation en fonction de la vitesse du son

A partir des relations 4.24, 4.25, ou 4.27, on peut introduire la vitesse du son sous la forme γrT ou
γp/ρ, et ainsi obtenir (avec un point d’arrêt d’indice 0)

γrT

γ − 1
+
u2

2
=
γrT0
γ − 1

, (4.34)

ou
γp/ρ

γ − 1
+
u2

2
=
γp0/ρ0
γ − 1

. (4.35)

et ainsi, avec a =
√
γrT =

√
γp/ρ et a0 =

√
γrT0 =

√
γp0/ρ0

a2

γ − 1
+
u2

2
=

a20
γ − 1

, (4.36)

que l’on peut récrire en faisant apparaître le nombre de Mach

a2

a20
=

(
1 +

γ − 1

2
M2

)−1

, (4.37)

ce qui signifie que la vitesse du son en un point donné d’un écoulement est une fonction du nombre de
Mach. Ce type de formulation sera très utilisée par la suite, puisque le nombre de Mach caractérise l’effet
de compressibilité dans un écoulement.
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4.5.5 Formulation en fonction des grandeurs soniques

D’après les propriétés d’un point sonique, l’équation d’énergie (4.36) sur un tel point s’écrit

a2

γ − 1
+
u2

2
=

a2∗
γ − 1

+
a2∗
2
, (4.38)

soit
a2

γ − 1
+
u2

2
=

γ + 1

2 (γ − 1)
a2∗, (4.39)

que nous pouvons écrire sous la forme suivante de manière à déterminer le type d’écoulement en fonction
des grandeurs soniques

u2 − a2∗
2

=
a2∗ − a2

γ − 1
, (4.40)

si u > a∗ ↔ a∗ > a → u > a,
si u < a∗ ↔ a∗ < a → u < a,

ce qui permet de voir si en un point l’écoulement est subsonique, sonique ou supersonique.

4.5.6 Calcul des grandeurs statiques en fonction des grandeurs soniques

Considérons maintenant un point de l’écoulement pour lequel la vitesse est sonique. Deux configura-
tions classiques permettent d’illustrer ce concept.

Tout d’abord le cas d’un écoulement dans une tuyère alimentée par un réservoir à pression totale
(vitesse nulle) donnée. Nous verrons dans l’étude du comportement de l’écoulement dans la tuyère, et
selon le rapport de pression entre la pression du réservoir et la pression externe, si le col de la tuyère
possède ou non cette propriété particulière. Lorsque l’écoulement dans le divergent devient supersonique,
partiellement ou totalement, la vitesse au col ne change plus et est égale à la vitesse du son locale.
Lorsque ces conditions sont vérifiées, on parle de grandeurs soniques au col pour la vitesse, la pression,
la température, etc.

Une seconde configuration est celle de l’écoulement autour d’un avion, par exemple, qui est en vol
transsonique, soit à un nombre de Mach proche de l’unité. Supposons qu’en un point quelconque autour
de l’avion, la vitesse locale de l’écoulement puisse atteindre la vitesse locale du son. Si cette vitesse est
atteinte en un point, sur une ligne ou une surface, nous parlerons de point, ligne ou surface sonique. Dans
ce cas, nous avons la condition M = 1 et les relations (4.29), (4.31) puis (4.32) deviennent respectivement

T∗
T0

=
2

γ + 1
,

p∗
p0

=

(
2

γ + 1

) γ
γ−1

,
ρ∗
ρ0

=

(
2

γ + 1

) 1
γ−1

. (4.41)

Monoatomique Diatomique
γ 5/3 = 1.667 7/5 = 1.4 9/7 = 1.286

T∗/T0 0.7499 0.8333 0.8750
p∗/p0 0.4871 0.5283 0.5483
ρ∗/ρ0 0.6495 0.6339 0.6267

Table 4.2 – Valeurs des grandeurs au point sonique par rapport aux grandeurs totales

Il reste, dans cette formulation, à introduire le nombre de Mach sonique pour lequel la vitesse du son
est choisie aux grandeurs soniques

M∗ =
u

a∗
. (4.42)

Considérons l’équation d’énergie associée aux grandeurs soniques (4.39) et divisons la par u2 de manière
à obtenir

(a/u)2

γ − 1
+

1

2
=

γ + 1

2 (γ − 1)

a2∗
u2
, (4.43)
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qui, après réarrangement et introduction des nombres de Mach M et M∗ devient

M2 =
2

(γ + 1) /M2
∗ − (γ − 1)

, (4.44)

et l’inverse est donnée par

M2
∗ =

(γ + 1)M2

2 + (γ − 1)M2
. (4.45)

On peut vérifier que
M∗ = 1 ←→ M = 1,
M∗ < 1 ←→ M < 1,
M∗ > 1 ←→ M > 1.

(4.46)

Par contre lorsque M →∞, M∗ est fini. En effet, nous avons

lim
M→∞

M∗ =

(
γ + 1

γ − 1

)1/2

, (4.47)

qui, pour l’air avec γ = 1.4, donne M∗ = 2.4495. L’utilisation des grandeurs soniques est très utile lors
de l’étude des écoulements supersoniques dans des tuyères.

4.5.7 Détente dans le vide
Pour le cas d’un réservoir à une température totale T0 (Figure 4.5) se déversant dans le vide (p = 0), il

est possible de trouver les conditions en sortie de tuyère, en supposant que l’écoulement est isentropique.
A partir de la relation 4.27

cpT +
u2

2
= cpT0, (4.48)

il est possible de trouver la vitesse des gaz en sortie

u =
√
2cp(T0 − T ). (4.49)

Avec un écoulement isentropique

u =

√√√√2cpT0

[
1−

(
p

p0

) γ−1
γ

]
. (4.50)

Ainsi, la vitesse maximale est atteignable quand p = 0 (vide)

umax =
√
2cpT0. (4.51)

En utilisant a0 = (γrT0)
1/2 et cp = γr/(γ − 1), on trouve finalement

umax =

√
2

γ − 1
a0. (4.52)

Bien que cette vitesse soit finie, d’autres grandeurs ne le sont pas, comme le nombre de Mach de sortie
qui lui tend vers l’infini (car la température de sortie tend vers zéro). Dans le paragraphe précédent, on
a trouvé que dans ces conditions M∗ tend vers une valeur finie également.

Pour une tuyère de fusée, cette vitesse de sortie correspond à l’impulsion spécifique (specific impulse)
que l’on désire maximale. En ré-écrivant cette relation

umax =

√
2γ

γ − 1

R

M
T0, (4.53)

on voit qu’un gaz de petite masse molaire et un rapport de chaleurs spécifiques γ tendant vers 1 est
désirable.
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4.6 Quand un écoulement est-il compressible ?
Nous avons vu en introduction que le nombre de Mach est la grandeur caractéristique de la com-

pressibilité d’un écoulement. Au chapitre 2, le nombre de Mach a été interprété comme le rapport des
contraintes d’inertie et élastiques (2.83). Nous allons maintenant donner une autre interprétation au
nombre de Mach basée sur un raisonnement dimensionnel.

Pour cela, nous rappelons l’équation de conservation de la quantité de mouvement dans le cas des
hypothèses admises dans ce chapitre (4.9)

udu+
1

ρ
dp = 0, (4.54)

ou sous forme intégrée :
u2

2
+

∫
1

ρ
dp = C. (4.55)

En partant de conditions de réservoir avec pression p0 et densité ρ0, on suppose une petite accélération
de l’écoulement vers une vitesse u, une pression p = p0 + δp, densité ρ = ρ0 + δρ, dont nous déduisons
que

u2

2
+

∫ p

p0

δp′

ρ0 + δρ′
= 0 (4.56)

Avec : ∫ p

p0

δp′

ρ0 + δρ′
∼
∫ p

p0

δp′

ρ0
(1− δρ′

ρ0
) ∼ 1

ρ0

∫ p

p0

δp′ =
1

ρ0
(p− p0) =

1

ρ0
δp (4.57)

nous en déduisons :

δp ∼ −ρ0
u2

2
. (4.58)

Par ailleurs, à partir de l’expression de la vitesse du son et du fait que l’écoulement est isentropique,
nous en déduisons :

δp ∼ a2δρ, (4.59)

ce qui par élimination de δp avec (4.58) nous permet d’écrire

δρ

ρ0
∼ −1

2
M2. (4.60)

Ainsi, le nombre de Mach représente une mesure des variations relatives de masse volumique par rapport
aux variations du nombre de Mach (pour des petites valeurs du nombre de Mach), soit l’erreur qu’on
commet en considérant une masse volumique constante. Un fluide dont la vitesse est faible comparée à
la vitesse du son se comporte comme s’il était incompressible. Le nombre de Mach M apparaissant au
carré, cela implique qu’alors δρ/ρ0 n’est pas nécessairement petit. En fait si M est inférieur à environ
0.3, la variation de la masse volumique est de quelques pour cent et par suite l’on peut sans grande erreur
adopter l’hypothèse d’incompressibilité pour l’écoulement.

Il est possible de déduire ces résultats d’une manière rigoureuse.
L’équation de Bernoulli généralisée aux écoulements compressibles pour un gaz parfait (Equation

4.24) fournit une relation entre la pression et la vitesse

u2

2
+

γ

γ − 1

p

ρ
=

γ

γ − 1

p0
ρ0
. (4.61)

La pression dynamique a perdu sa signification physique dans le cas de l’écoulement compressible, puisque
ce n’est plus la différence entre la pression totale et la pression statique. D’après les relations isentropiques,
on a

p0
p

=

(
1 +

γ − 1

2
M2

) γ
γ−1

. (4.62)

On effectue un développement binomial de cette expression pour des nombres de Mach faibles

p0
p

= 1 +
γ

2
M2 +

γ

8
M4 +

γ (2− γ)
48

M6 + . . . , (4.63)
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M 0.1 0.2 0.3

p0 − p
1
2ρ0u

2
0.9975 0.9901 0.9781

Table 4.3 – Effets de compressibilité de l’air (γ = 1.4) en fonction du nombre de Mach.

que l’on peut ré-écrire

p0 = p+ p

(
γ

2
M2 +

γ

8
M4 +

γ (2− γ)
48

M6 + . . .

)
, (4.64)

soit
p0 = p+

γp

2
M2

(
1 +

1

4
M2 +

2− γ
24

M4 + . . .

)
. (4.65)

Or, à l’aide de l’expression de la vitesse du son et de la définition du nombre de Mach,

γp

2
M2 =

γp

2

u2

γp/ρ
=

1

2
ρu2. (4.66)

on obtient
p0 = p+

1

2
ρu2

(
1 +

1

4
M2 +

2− γ
24

M4 + . . .

)
, (4.67)

qui peut s’exprimer

p0 = p+
1

2
ρ0u

2

(
ρ

ρ0

)(
1 +

1

4
M2 +

2− γ
24

M4 + . . .

)
. (4.68)

En utilisant
ρ

ρ0
=

(
1 +

γ − 1

2
M2

)− 1
γ−1

, (4.69)

et après un développement binomial

ρ

ρ0
= 1− 1

2
M2 +

γ

8
M4 + . . . , (4.70)

il en résulte la relation finale suivante

p0 = p+
1

2
ρ0u

2

(
1− 1

4
M2 +

2γ − 1

24
M4 + . . .

)
. (4.71)

Pour M = 0, on retrouve la relation de Bernoulli pour un écoulement incompressible. Le terme en
parenthèse est donc un terme correctif à la relation de Bernoulli et donne une indication du degré de
compressibilité

p0 − p
1
2ρ0u

2
= 1− 1

4
M2 +

2γ − 1

24
M4 + . . . . (4.72)

On constate que pour les petites valeurs de M la correction est faible. Quelques valeurs du facteur
correctif pour quelques valeurs du nombre de Mach M sont données dans le Tableau (pour de l’air). La
convention est de négliger les effets dus à la compressibilité pour des nombres de Mach inférieurs à 0.3.

4.7 Mesures en écoulements compressibles et isentropiques
En écoulements compressibles et isentropiques (sans onde de choc), il est possible de mesurer la

pression totale p0, la pression statique p, ainsi que la température totale T0. La connaissance empirique
de ces trois quantités permet alors l’évaluation du nombre de Mach, de la vitesse, et de la température
à travers l’utilisation des relations isentropiques.
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Le nombre de Mach est calculable à partir de la relation suivante (qu’on appelle équation du tube de
Pitot subsonique)

p0
p

=

(
1 +

γ − 1

2
M2

) γ
γ−1

. (4.73)

Une mesure de la température totale T0 permet d’en déduire la valeur de la température statique T
à partir de

T0
T

= 1 +
γ − 1

2
M2. (4.74)

Il est alors possible d’évaluer la vitesse

u =M
√
γrT . (4.75)

Une manipulation de ces relations produit le résultat suivant

u =

√√√√2γrT0
γ − 1

[
1−

(
p

p0

) γ−1
γ

]
. (4.76)

La pression dynamique locale vaut alors

1

2
ρu2 =

γp

2
M2. (4.77)
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Chapitre 5

Ecoulements quasi-unidimensionnels
isentropiques permanents

Dans ce chapitre, nous allons étudier le cas d’écoulements quasi-unidimensionnels compressibles per-
manents de fluides idéaux. Les résultats obtenus seront applicables au cas d’un écoulement isentropique
dans une tuyère ou dans une soufflerie supersonique. Ils mettront en évidence les principes essentiels
permettant à l’écoulement de passer d’un régime subsonique à un régime supersonique (et viceversa).
Comme dans le chapitre précédent, nous faisons l’hypothèse que le fluide est dénué de viscosité, et que
l’écoulement n’est pas soumis à des forces volumiques, au rayonnement et qu’il est adiabatique. Nous
verrons dans des chapitres ultérieurs qu’il existe des régimes d’écoulement dans une tuyère où des ondes
de chocs peuvent apparaître. De plus, à la sortie d’une tuyère, l’écoulement sera parfois dévié de sa tra-
jectoire et perdra ainsi sa configuration quasi-unidimensionnelle au profit d’un réseau d’ondes de détentes
et de choc.

Figure 5.1 – Veine d’essai d’une soufflerie supersonique (hepia, Genève)

5.1 Equations de conservation quasi-unidimensionnelles

Considérons l’écoulement stationnaire d’un fluide parfait dans une conduite de section A variable
selon l’abscisse curviligne x située au centre de la conduite.

Si r(x) représente une mesure de la section telle que le rayon ou la demi-hauteur, et si Φ(x) est le
rayon de courbure de la paroi, nous supposons dans cette approximation que

dr

dx
≪ 1 et

r

Φ
≪ 1, (5.1)

Ces conditions peuvent évidemment être satisfaites par un tube de courant (surface tubulaire, tangente
à une famille de lignes de courants) qui peut être choisi comme infiniment petit. Ainsi, pour des lignes
de courants tridimensionnelles connues a priori, la théorie qui suit s’y appliquera.
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Figure 5.2 – Paramètres d’une tuyère ou d’un tube de courant conduisant à l’hypothèse d’un écoulement
quasi-monodimensionnel

Si les hypothèses 5.1 sont satisfaites, alors il est possible d’idéaliser l’écoulement réel tridimensionnel
par un écoulement quasi-monodimensionnel. Un tel écoulement quasi-monodimensionnel permet d’ad-
mettre les simplifications suivantes pour le champ de vitesse u = (u, v, w)

u = u(x, y, z) −→ u = u(x),
v = v(x, y, z) −→ v = 0,
w = w(x, y, z) −→ w = 0,

(5.2)

et pour les champs scalaires
p = p(x, y, z) −→ p = p(x),
ρ = ρ(x, y, z) −→ ρ = ρ(x),
e = e(x, y, z) −→ e = e(x),
T = T (x, y, z) −→ T = T (x).

(5.3)

Il est bien évident que la condition de variations faibles de la section selon l’axe de la conduite n’est
pas la seule condition qui permette d’idéaliser l’écoulement comme étant monodimensionnel. Pour des
fluides réels (avec viscosité), le profil de vitesse n’est pas uniforme à cause de l’adhérence du fluide à la
paroi (écoulement dit de Poiseuille pour une conduite, Figure 5.3). Ainsi, l’hypothèse d’un écoulement
monodimensionnel demande aussi que le fluide soit dénué de viscosité.

Figure 5.3 – Idéalisation d’un écoulement réel par un écoulement quasi-unidimensionnel

5.1.1 Conservation de la masse
Pour un volume de contrôle comme représenté sur la Figure 5.4, l’équation de conservation de masse

tridimensionnelle (3.1) s’écrit sous la forme∫
V

∂ρ

∂t
dV +

∫
S

ρu · n̂ dS = 0. (5.4)

Pour un écoulement permanent et quasi-monodimensionnel, l’équation précédente devient

(ρuA)x+∆x/2 − (ρuA)x−∆x/2 = 0, (5.5)

où l’on a fait intervenir le fait que seule la composante de vitesse selon x intervient, que la pente de la
paroi est si faible que la vitesse radiale est nulle, et qu’il n’y a pas d’écoulement selon la normale à la
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paroi. En divisant par ∆x et en laissant tendre ∆x vers zéro, on obtient

d

dx
(ρuA) = 0. (5.6)

Figure 5.4 – Volume de contrôle

5.1.2 Conservation de la quantité de mouvement
Les hypothèses générales (fluide dénué de viscosité et écoulement sans forces volumiques) nous per-

mettent d’écrire l’équation de conservation de la quantité de mouvement tridimensionnelle (3.4) sous la
forme ∫

V

∂ (ρu)

∂t
dV +

∫
S

(ρu · n̂)udS = −
∫
S

pn̂ dS. (5.7)

Contrairement à l’intégrale de surface faisant intervenir la vitesse normale à la paroi u · n̂, qui alors
s’annule sur les parois latérales de la tuyère, l’intégrale de surface de la pression doit être considérée
même sur les parois latérales. Pour un écoulement permanent monodimensionnel, on a alors pour la
composante selon x de la conservation de quantité de mouvement (en projetant selon x la force de
pression sur les parois latérales)(

ρu2A
)
x+∆x/2

−
(
ρu2A

)
x−∆x/2

= − ( pA)x+∆x/2 + (pA)x−dx/2 + px(Ax+∆x/2 −Ax−∆x/2), (5.8)

où le dernier terme a été obtenu en supposant une variation linéaire de la pression sur les parois latérales
(pour ∆x petit) et les principes élémentaires de l’hydrostatique pour la pression résultante. En divisant
par ∆x et en laissant ∆x tendre vers zéro, on obtient

d

dx
(ρu2A) = − d

dx
(pA) + p

dA

dx
. (5.9)

En développant les dérivées selon x

u
d

dx
(ρuA) + ρuA

du

dx
= −Adp

dx
− pdA

dx
+ p

dA

dx
, (5.10)

et en utilisant l’équation de conservation de masse d/dx(ρuA) = 0 (Equation 5.6), l’équation de conser-
vation de quantité de mouvement devient

ρu
du

dx
= −dp

dx
. (5.11)

Il est à remarquer que cette relation ne fait pas intervenir la section de la tuyère, contrairement à
l’équation de conservation de masse. Cette équation est en fait la version unidimensionnelle de l’équation
d’Euler pour un écoulement permanent.
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5.1.3 Conservation de l’énergie

Les hypothèses générales (écoulement permanent, adiabatique, sans rayonnement, et fluide dénué de
viscosité) permettent d’obtenir d’une manière analogue

dh0
dx

= 0, (5.12)

où h0 est l’enthapie totale h0 = h+ 1/2u2.

5.1.4 Résumé des équations pour un écoulement quasi-unidimensionnel per-
manent isentropique

d (ρuA)

dx
= 0

ρu
du

dx
= −dp

dx

h0 = const

(5.13)

5.2 Ecoulement dans un tube de section variable

5.2.1 Effets de la variation de section

Etant donné que les variables ne dépendent que de x, les équations de conservation peuvent s’écrire
sous la forme différentielle suivante

— Conservation de la masse

d (ρuA) = 0 −→ dρ

ρ
+
du

u
+
dA

A
= 0, (5.14)

— Conservation de la quantité de mouvement

ρudu = −dp, (5.15)

— Conservation de l’énergie
dh+ udu = 0. (5.16)

Nous allons éliminer la masse volumique entre les différentes relations, et en particulier dans (5.14). Pour
cela, réécrivons l’équation de conservation de la quantité de mouvement (5.15) sous la forme

dp

ρ
=
dp

dρ

dρ

ρ
= −udu, (5.17)

puis en se servant du fait que l’écoulement est isentrope, nous avons

dp

dρ
=

(
∂p

∂ρ

)
s

= a2, (5.18)

ce qui nous permet d’écrire (5.17) sous la forme

dp

ρ
= a2

dρ

ρ
= −udu, (5.19)

dont nous déduisons à l’aide de la définition du nombre de Mach

dρ

ρ
= −udu

a2
= −u

2du

a2u
= −M2 du

u
. (5.20)
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La substitution de (5.20) dans (5.14) permet ensuite d’aboutir à

dA

A
=
(
M2 − 1

) du
u
, (5.21)

dont il est possible de déduire les relations

dA

A
= −M

2 − 1

γM2

dp

p
, (5.22)

et
dA

A
=

M2 − 1

1 +
γ − 1

2
M2

dM

M
. (5.23)

L’expression (5.21) traduit la relation entre la variation de section et la variation de vitesse qui dépend
du nombre de Mach. De manière analogue, on obtient

da

a
= −γ − 1

2
M2 du

u
, (5.24)

ainsi qu’une relation déjà obtenue dans le chapitre précédent

du

u
=

1

1 +
γ − 1

2
M2

dM

M
. (5.25)

Ceci nous permet de distinguer les quatre cas réprésentés à la Figure 5.5.

Figure 5.5 – Comportement de l’écoulement dans une tuyère en fonction du nombre de Mach et de la
géométrie

Ecoulement subsonique Lorsque l’écoulement est subsonique
(
M2 − 1

)
< 0, une augmentation de

section entraîne une diminution de la vitesse et inversement. Ainsi, pour un écoulement subsonique
compressible, pour augmenter la vitesse, il faut un canal convergent et pour diminuer la vitesse, le canal
doit être divergent.

Ecoulement supersonique Dans ce cas,
(
M2 − 1

)
> 0. Par conséquent, une augmentation de vitesse

est associée à une augmentation de section. De même, une diminution de vitesse est associée à une
diminution de surface. Ainsi, pour un écoulement supersonique, pour augmenter la vitesse, il faut un
divergent, et pour la diminuer, il faut un convergent. On a un comportement inverse par rapport aux
écoulements subsoniques.
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Ecoulement sonique On a alors dA = 0, même si l’on a une variation de vitesse. Cela correspond à
un extremum local de la distribution de section en fonction de x. Physiquement, cela correspond à une
section minimale. Cette section minimale est le col de la tuyère comme on le montre plus loin. Quelque
soit l’écoulement supersonique qui passe dans le divergent de la tuyère, l’écoulement sera toujours sonique
au col, c’est-à-dire qu’à cet endroit M = 1. L’inverse est vrai, si l’on veut ralentir de manière isentrope
un écoulement supersonique vers un régime subsonique, on doit d’abord ralentir l’écoulement dans un
convergent, et, dès que le régime sonique est atteint, on doit continuer à le décélérer vers des vitesses
subsoniques dans un divergent. On a alors un diffuseur.

Les différents comportements de l’écoulement en fonction de la variation de section et du nombre de
Mach exprimés par les relations peuvent être résumés dans le tableau ci-dessous.

dA/A − − + +
M < 1 > 1 < 1 > 1
du/u + − − +
dM/M + − − +
dp/p − + + −
dρ/ρ − + + −
dT/T − + + −
da/a − + + −

Table 5.1 – Comportement des écoulements quasi-monodimensionnels.

Quelques remarques s’imposent.
* Les variations de vitesse du/u suivent toujours les variations du nombre de Mach dM/M .
* Les variables thermodynamiques p, T , ρ, et a =

√
γrT varient dans le même sens, opposé à celui

de M et u.

5.2.2 Conditions au col

Afin que l’écoulement passe de manière continue du régime subsonique au régime supersonique, il
doit exister un point (une section) pour laquelle le nombre de Mach doit être égal à 1. Nous avons vu
précédemment que cette section correspond à un extremum local de la section de sorte que dA = 0.
Considérons la relation (5.23) que nous écrivons sous la forme

1

M

dM

dx
=

[
1 + γ−1

2 M2

A

]
1

M2 − 1

dA

dx
. (5.26)

Nous nous intéressons au cas où M → 1 et dA
dx → 0. Nous appliquons alors la règle de l’Hospital pour

déterminer

lim
M→1, dAdx →0

1

M

dM

dx
=

[
1 + γ−1

2 M2

A

]
M=1

d2A
dx2

2M
dM

dx

, (5.27)

dont nous déduisons facilement la relation

lim
M→1, dAdx →0

(
dM

dx

)2

=
1

2

[
1 + γ −1

2 M2

A

]
M=1

d2A

dx2
=

(1 + γ)

4A

d2A

dx2
. (5.28)

Pour qu’une solution physique existe, le membre de droite doit être positif. Il faut donc, 1+γ étant positif,
que d2A

dx2 le soit aussi. Ceci correspond donc bien à un minimum de la section. Par suite, le nombre de
Mach ne peut atteindre la valeur de 1 qu’à la section minimum de la tuyère, c’est-à-dire au col. Ainsi,
le fluide est accéléré du repos dans le convergent (dA < 0), passe à Mach M = 1 au col (dA = 0), et
continue à accélérer dans la partie divergente (dA > 0).
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5.2.3 Relation entre une section et la section au col
Supposons que le rapport de pression entre la pression de réservoir et la pression de sortie soit telle

que l’écoulement soit sonique au col. La section au col sera notée par la suite A∗ puisque l’écoulement
au col est aux conditions soniques. De la même manière, le nombre de Mach et la vitesse au col sont
notés par M∗ et u∗. Comme l’écoulement est sonique au col, l’écoulement dans cette section vérifie les
relations

M =M∗ = 1 et u∗ = a∗. (5.29)

Dans toute autre section d’une tuyère, les variables sont notées A, M et u. L’équation de conservation
de la masse sous forme intégrale écrite entre la section au col et une quelconque autre section devient

ρ∗u∗A∗ = ρuA, (5.30)

or, la relation (5.30) s’écrit aussi sous la forme

A

A∗
=
ρ∗
ρ

a∗
u

=
ρ∗
ρ0

ρ0
ρ

a∗
u
. (5.31)

La masse volumique ρ0 totale est constante dans tout l’écoulement isentrope. Rappelons la relation
isentrope

ρ0
ρ

=

(
1 +

γ − 1

2
M2

)1/(γ−1)

, (5.32)

et son expression aux conditions soniques

ρ∗
ρ0

=

(
2

γ + 1

)1/(γ−1)

, (5.33)

ainsi que la définition de M∗ et son expression fonction du nombre de Mach M

M2
∗ =

(
u

a∗

)2

=

γ + 1

2
M2

1 +
γ − 1

2
M2

. (5.34)

En élevant (5.31) au carré, nous faisons apparaître(
A

A∗

)2

=

(
ρ∗
ρ

a∗
u

)2

=

(
ρ∗
ρ0

)2(
ρ0
ρ

)2 (a∗
u

)2
, (5.35)

de manière à substituer les relations (5.32), (5.33) et (5.34) pour obtenir(
A

A∗

)2

=

(
2

γ + 1

)2/(γ−1)(
1 +

γ − 1

2
M2

)2/(γ−1)
(
1 + γ−1

2 M2

γ+1
2 M2

)
, (5.36)

qui se simplifie sous la forme

A

A∗
=

1

M

[
2

γ + 1

(
1 +

γ − 1

2
M2

)](γ+1)/2(γ−1)

. (5.37)

Cette relation est très importante et est illustrée en Figure 5.6. Le nombre de Mach dans une section
quelconque de la tuyère est une fonction du rapport de la section locale à la section au col aux conditions
soniques. Comme A < A∗ n’est pas physiquement possible, on a toujours la condition A ≥ A∗. D’autre
part, on a deux valeurs de M pour chaque rapport de section. Lorsque M est subsonique le rapport A/A∗
décroît et tend vers 1. Lorsque M est supersonique le rapport A/A∗ croit.

En introduisant la relation isentrope (4.31) dans (5.37), il vient

A∗

A
=

(
2

γ − 1

)1/2(
2

γ + 1

)−(γ+1)/2(γ−1)(
p

p0

)1/γ
[
1−

(
p

p0

)γ−1/γ
]1/2

, (5.38)

qui nous permet de remarquer que A∗
A prend sa valeur maximale égale à l’unité pour la valeur de p

p0
= p∗

p0
correspondant à M = 1.
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Figure 5.6 – Rapport de la section locale à la section au col en fonction du nombre de Mach pour
γ = 1.4.

5.2.4 Débit-masse
L’équation de conservation de la masse pour les écoulements quasi-monodimensionnels exprime la

conservation du débit-masse dans chaque section du tube. En notant le débit-masse par ṁ, il s’exprime
par la relation

ṁ = ρuA, (5.39)

que nous aimerions exprimer en fonction du nombre de Mach et du fluide (γ). Pour cela, nous faisons
apparaître, dans la relation précédente, les grandeurs

ṁ =
ρ

ρ0

u

a
aρ0A =

ρ

ρ0

u

a

√
γrTρ0A, (5.40)

ce qui nous permet d’aboutir à la formulation

ṁ =
ρ

ρ0
M

√
γrT0

T

T0

p0
rT0

A = γM
ρ

ρ0

√
T

T0

√
1

γrT0
p0A, (5.41)

soit

ṁ = γM
ρ

ρ0

√
T

T0

p0
a0
A. (5.42)

En se servant des relations isentropes pour exprimer les rapports de pression et de température, nous
obtenons

ṁ = γM

(
1 +

γ − 1

2
M2

)− 1
γ−1

(
1 +

γ − 1

2
M2

)− 1
2 1

a0
p0A, (5.43)

ainsi que

ṁ = γM

(
1 +

γ − 1

2
M2

)− γ+1
2(γ−1) p0

a0
A, (5.44)

qui est aussi utilisée sous forme adimensionnelle

a0ṁ

p0A
= γM

(
1 +

γ − 1

2
M2

)− γ+1
2(γ−1)

. (5.45)

Si nous choisissons comme référence les conditions soniques au col, nous avons M = 1 et A = A∗ ce qui
implique

a0ṁ

p0A∗
= γ

(
1 +

γ − 1

2

)− γ+1
2(γ−1)

= γ

(
2

γ + 1

) γ+1
2(γ−1)

, (5.46)
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ou encore
ṁ

ρ0a0A∗
=

(
1 +

γ − 1

2

)− γ+1
2(γ−1) (γ=1.4)∼= 0.58. (5.47)

5.3 Ecoulement dans une tuyère

5.3.1 Tuyère convergente et blocage sonique

L’écoulement dans une tuyère convergente est engendrée par une pression totale p0 régnant en amont
de la tuyère. La configuration de l’écoulement va dépendre de la pression ambiante pα à la sortie de la
tuyère, que l’on nomme également pression arrière ou pression en aval (back pressure en langue anglaise),
d’où l’indice α. Cette pression peut varier de la valeur pα = p0 (sans écoulement) jusqu’au vide (pα = 0).
La Figure 5.7 illustre les différents cas en représentant le rapport de la pression p dans la tuyère et la
pression totale p0 en fonction de la coordonnée axiale de la tuyère et des différentes valeurs de la pression
arrière (a, b, c, d).

Figure 5.7 – Distribution de pression dans une tuyère convergente et une tuyère convergente-divergente.

Quand la pression arrière a une valeur située comme dans le cas b, entre le cas a et c, c’est à dire
entre p∗ et p0, un écoulement subsonique se produit dans la tuyère. Par exemple, pour pα/p0 = 0.65, les
tables isentropiques pour γ = 1.4 fournissent un nombre de Mach M = 0.81 en sortie de tuyère.

Quand la pression arrière est égale à p∗ (cas c), l’écoulement est sonique en sortie de tuyère (M = 1
etc.). Dans le chapitre précédent, nous avons vu que pour γ = 1.4, p∗/p0 = 0.5283 (cette valeur se
retrouve dans les tables isentropiques pour M = 1).

Si la pression arrière est réduite au dessous de cette valeur p∗ (cas d), l’écoulement dans la tuyère
restera inchangé, étant donné que le nombre de Mach maximal dans une tuyère convergente est égal à 1
et celui-ci se produit où la section est minimale, donc au col (sortie de tuyère). La détente se produira
alors à l’extérieur de la tuyère (par des ondes de détentes).

Lorsque l’écoulement devient sonique au col, aucune perturbation ne peut remonter dans le convergent.
Par conséquent, l’écoulement dans le convergent ne communique plus avec l’écoulement en aval du col et
n’a aucun moyen de savoir que la pression de sortie continue à diminuer. Physiquement, ce phénomène
est facile à comprendre du fait qu’aucun message (se propageant à la vitesse du son) ne peut remonter
l’écoulement si en un endroit la vitesse est égale à la vitesse du son.
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Selon (5.47), le débit-masse ne dépend que des conditions régnant dans le réservoir et non pas de la
pression arrière à condition toutefois que l’écoulement soit sonique au col. Ainsi, pour une valeur de p0
constante, le débit-masse sortant de la tuyère n’augmente pas en baissant la pression arrière (Fig. 5.7).
Ce phénomène constitue l’effet de blocage sonique (choked flow) d’un écoulement compressible.

5.3.2 Tuyère convergente-divergente ou de Laval
L’écoulement dans une tuyère de Laval engendré par une pression totale p0 régnant en amont de la

tuyère se présente comme indiqué sur la Figure 5.7 en fonction de la pression variable pα régnant en aval
de la tuyère.

Si pα est suffisamment élevée, l’écoulement demeure subsonique tout le long de la tuyère (cas a et b).
Dans le cas c, le col devient sonique au moment où la pression arrière a une valeur particulière (égale

à celle du cas c). L’écoulement est isentropique tout le long de la tuyère, et en particulier, subsonique. Le
fait que l’écoulement soit subsonique dans la parie divergente est confirmé par la tendance de la pression
(qui augmente) dans la partie divergente, qui suit celle de la section (qui augmente également).

Les cas d et e étant mis à l’écart pour l’instant, quand la pression arrière atteint une valeur égale à
celle du cas f , l’écoulement (isentropique) est alors supersonique dans la partie divergente, tout en restant
subsonique dans la partie convergente et sonique au col. Le cas f est appelé point de fonctionnement
(design operation) car la globalité de l’écoulement dans la tuyère et en sortie est isentropique et sa vitesse
de sortie est maximale (un des objectifs des tuyères, en particulier celles des propulseurs supersoniques).

Entre les cas c et f , l’écoulement est caractérisé par la présence d’ondes de choc dans la tuyère et à la
sortie. Ce phénomène sera examiné dans des chapitres ultérieurs. Pour des pressions arrières inférieures
à celles du cas f (cas g par exemple), des ondes de détente se forment en sortie (ce phénomène sera
également étudié dans des chapitres ultérieurs.



Chapitre 6

Introduction aux ondes de choc et de détente

6.1 Introduction

Une onde de choc (shock wave en anglais) est une région de l’écoulement où de fortes variations des
grandeurs physiques apparaissent sur de très faibles longueurs caractéristiques. L’ordre de grandeur de
l’épaisseur d’un choc peut varier selon les conditions de travail : de quelques “libre parcours moyen” des
molécules d’un gaz, soit de l’ordre du micron (10−6m), jusqu’à quelques millimètres (et parfois même
plus). Dans les cas les plus communs, ces zones sont très minces par rapport à la taille caractéristique de
l’écoulement, et nous pouvons les idéaliser comme des surfaces de discontinuité dans l’espace. Par suite,
les grandeurs physiques sont elles-mêmes discontinues à travers cette surface, ce qui n’est évidemment
pas le cas dans la réalité. On rencontre plusieurs noms attribués à cette surface de discontinuité : front
de choc, onde de choc, ou choc tout simplement. Les ondes de chocs furent observées pour la première
fois par Mach lui même en 1887. Son fils, Ludwig, quantifia la surpression générée par une onde de choc
en utilisant un instrument qui de nos jours prend le nom d’interféromètre de Mach-Zehnder.

Figure 6.1 – Image prise par Ernst Mach (hiver 1888) d’une onde de choc devant un projectile super-
sonique (les traits verticaux sont des fils permettant la synchronisation de la prise d’image). Cinq ans
plus tard, l’image de droite fut prise par son fils Ludwig avec un interféromètre de Mach-Zenhder pour
quantifier le ressaut en pression.

Un choc est associé à une compression (augmentation de la pression) pour les fluides les plus communs.
De ce fait, la terminologie choc de compression est généralement redondante. Cependant, il a été montré
qu’un choc de raréfaction ou choc de détente (rarefaction shock) est possible dans des cas ésotériques
comme pour un fluide autour du point critique ou un plasma. Le critère thermodynamique d’existence
de chocs de raréfaction sera présenté dans ce qui suit.

Les chocs peuvent apparaître comme stationnaires ou en mouvement selon le référentiel choisi. Par
exemple, dans le référentiel d’un avion supersonique, le choc apparaîtra comme stationnaire. Dans le
référentiel terrestre, le choc sera en mouvement. Un autre exemple de choc en mouvement relatif est
celui créé par une explosion (où l’observateur est fixe par rapport à l’explosif) ou dans un tube à choc
par rupture d’un diaphragme séparant initialement deux gaz à des pressions différentes.
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Figure 6.2 – Exemple d’une onde de choc en mouvement (pris du film BBC "Invisible Worlds" 2010
de Richard Hammond) pour un observateur fixe par rapport à l’explosif.

Figure 6.3 – Exemple d’une onde de choc fixe par rapport à l’observateur (ondes de chocs autour d’une
entrée d’air conique à Mach 2.4, hepia, Genève).
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Figure 6.4 – Exemples de chocs droits (flèche rouge), donc perpendiculaires à l’écoulement (flèche
bleue), dans le sens horaire à partir de la photo en haut et à gauche : jet supersonique débouchant sur
une entrée d’air supersonique (supersonic inlet) ; onde de choc à l’intérieur d’une tuyère supersonique,
provoquant une séparation de la couche limite ; onde de choc droite en sortie d’une tuyère supersonique
sur-détendue, visualisée par Schlieren ; sortie de la tuyère sur-détendue du Space Shuttle Main Engine
(SSME), avec la présence d’une onde de choc droite en forme de disque, appelé disque de Mach (générant
en aval une hausse substantielle de la température des gaz).

Plusieurs types de chocs peuvent apparaître mais nous pouvons d’ores et déjà distinguer deux caté-
gories : les chocs droits et les chocs obliques.

6.1.1 Chocs droits

Un choc droit (normal shock wave) est par définition normal à l’écoulement (Figure 6.4). Un choc droit
est caractérisé par le fait que l’écoulement en aval est toujours subsonique (nombre de Mach inférieur
à 1). Comme le choc est un phénomène de compression, la pression en aval est supérieure à la pression
en amont (il en est de même de la température et de la masse volumique). Par contre, la pression
totale diminue : c’est cette“perte de charge” qui est responsable de la réduction de rendement dans les
entrées d’air supersonique. C’est également cette perte de charge que doit combattre le compresseur dans
une soufflerie supersonique à circuit fermé. La chute de pression totale est associée à une augmentation
de l’entropie (l’écoulement traversant un choc n’est pas isentropique). Ces chocs droits se retrouvent
également à l’intérieur des tuyères (avec des phénomènes de décrochage de couche limite) ou en sortie
de tuyère (sous forme de disque de Mach).

6.1.2 Chocs obliques

Les chocs obliques (oblique shock waves) sont tels que la vitesse en amont n’est pas orthogonale
à la surface du choc. La Figure 6.5 montre la réalisation d’un choc oblique attaché, bi-dimensionnel,
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résultant d’un changement brusque de direction de la paroi. Ce dispositif est utilisé dans des rampes de
compression d’entrée supersonique de réacteurs.

Cette morphologie se retrouve pour des profils géométriques en forme de dièdre, générant ainsi des
chocs obliques de part de d’autre du profil (Figure 6.6). En 3D, les chocs obliques ont une morphologie
conique.

Une remarque importante concerne la valeur du nombre de Mach en aval du choc : l’écoulement n’est
pas nécessairement subsonique et peut être supersonique. Par contre, les propriétés thermodynamiques
(pression, température, et masse volumique) se comportent de manière similaire à une onde de choc
droite (toutes augmentes, tandis que la pression totale décroît).

D’une manière générale, même pour des configurations complexes d’ondes de choc, il est possible
localement d’identifier un choc à un choc droit ou un choc oblique. Par exemple, un choc courbe (bow
shock) autour d’un corps non profilé symétrique est assimilé localement à une onde de choc droite au
voisinage du point d’arrêt, et à une onde de choc oblique aux autres points.

Figure 6.5 – Choc oblique sur une rampe de compression.

Figure 6.6 – Exemples de chocs obliques : ondes bi-dimensionnelles sur un dièdre à Mach 2.4 (hepia,
Genève) ; ondes coniques sur une ogive à Mach 1.7 ("Gallery of Fluid Motion" de Van Dyke) ; onde
de choc courbe (bow shock) axisymmétrique dans un écoulement de dioxyde de carbone à Mach 2.77
("Gallery of Fluid Motion" de Van Dyke).

6.1.3 Ondes de compression et ondes de détente
En dehors des chocs, à travers lesquels la pression augmente de manière discontinue, les écoulements

supersoniques peuvent également présenter des ondes de détente (expansion waves) ou des ondes de
compression (à ne pas confondre avec des chocs), où la pression décroit ou croît de manière continue.

L’image suivante (Figure 6.7) montre un schéma d’une onde de détente générée lors du changement
progressif ou brusque de direction d’une paroi plane : il s’agit ici d’une rampe d’expansion (ou de
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détente). Dans le cas de l’arête vive, la détente autour de l’arête se fait par une onde centrée, définie
par un faisceau de lignes (ou ondes) de Mach rectilignes, formant ce que l’on appelle un éventail de
Prandtl-Meyer (Prandtl-Meyer fan). L’écoulement est uniforme jusqu’à l’arête, avec un nombre de Mach
M1 et la première onde de Mach doit être rectiligne, inclinée de l’angle µ1. La dernière ligne de Mach est
inclinée d’un angle µ2 avec un nombre de Mach M2. Entre ces deux lignes limites, on obtient un éventail
continu de lignes dont l’angle varie continuement de µ1 à µ2. Dans le cas d’une courbure progressive de
la paroi, l’éventail est maintenant distribué le long de la paroi au lieu d’être centré. Les éventails centrés
se retrouvent en particulier sur le bord d’attaque de profils supersoniques à arête vive (Figure 6.7).

Contrairement aux ondes de chocs, le nombre de Mach augmente en traversant des ondes de détente (et
reste donc supersonique), tandis que pression, température, et masse volumique diminuent. L’écoulement
est isentropique à travers une onde de détente, et ainsi la pression totale reste inchangée.

Figure 6.7 – Ondes de détentes en forme d’éventail (fan).

D’une manière analogue, des ondes de compression peuvent se former autour d’un corps dont la
géométrie a été adéquatement étudiée. Un exemple en est donné sur la Figure 6.8. Bien que les rampes
de compression continue soient préférables d’un point de vue énergétique (la pression totale restant
inchangée) par rapport aux compressions discontinues (chocs, pour lesquels la pression totale chute), il
est plus simple de concevoir et d’opérer des rampes de compression générant des ondes de chocs obliques.
Une solution intermédiaire (présence de chocs obliques mais réduction de la perte de pression totale) est
une rampe de compression à plusieurs chocs obliques, mais d’intensité moindre.

6.1.4 Ondes de choc et de détentes dans d’autres contextes

Finalement, il existe des systèmes où des ondes de choc peuvent apparaître même en dehors du
contexte de la mécanique des fluides compressibles. La Figure 6.9 propose quelques exemples, allant du
traffic routier, aux écoulements hydrauliques à surface libre (rivières), pour lesquels on parle alors de res-
saut hydraulique (hydraulic jump). Ces systèmes peuvent être modélisés par des équations qui présentent
les mêmes caractéristiques que les équations décrivant le comportement des fluides compressibles.
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Figure 6.8 – Ondes de compression sur une forme géométrique concave permettant une compression
progressive, sans ondes de choc, à Mach 2.1 ("Gallery of Fluid Motion" de Van Dyke).

Figure 6.9 – Exemples d’ondes de chocs dans des situations où n’intervient pas la compressibilité des
fluides. Sens horaire, en partant de la gauche : ressaut hydraulique dans un évier ; onde de choc dans un
traffic routier (Sugiyama et al., 2008) ; ressaut hydraulique sur la rivière Severn (Dyke, 1982) ; illustration
métaphorique de la propagation d’une onde de choc (Shapiro, 1953).
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6.2 Formation d’ondes de choc et de détente

La formation d’ondes de chocs est un phénomène complexe qui se produit dans le temps. Nous allons
décrire l’évolution initiale d’une onde de compression et suggérer sa tendance à devenir une onde de
choc. La formation même d’une onde de choc n’est pas facilement analysable avec des moyens de base
et requiert des outils performants (souvent numériques du fait du caractère non linéaire du phénomène).
Par conséquent, nous nous limiterons à des considérations physiques dans une première approche, et dans
un deuxième temps, nous présenterons une approche mathématique simplifiée de l’évolution initiale de
l’onde de pression. En contrepartie, la formation d’une onde de détente est bien analysée par ces deux
approches.

Ces approches nous permettront de (i) comprendre les raisons pour lesquelles seuls les chocs de
compression sont possibles (les chocs de détente ou de raréfaction étant impossible pour des fluides
habituels), et (ii) déterminer les phénomènes qui provoquent un accroissement de l’entropie à travers une
onde de choc (alors que l’onde de pression initiale est isentropique).

6.2.1 Approche pragmatique : piston accéléré dans un fluide au repos

L’approche traditionnelle pour l’étude de l’évolution temporelle des ondes de pression consiste à
considérer une onde de compression générée par le mouvement accéléré d’un piston dans une conduite
unidimensionnelle. Initialement, le fluide est au repos dans la conduite. Le piston accélère vers la droite,
et on modélise l’accélération par une succession de sauts en vitesse se produisant à des intervalles de
temps réguliers, avec un piston se déplaçant à vitesse constante entre chaque impulsion. Il s’agit donc
d’abord d’analyser comment se comportent les ondes de pression générées à chaque impulsion.

Formule d’Allievi

Le schéma sur la figure ci-dessous (Figure 6.10 illustre un front d’onde de compression généré par une
impulsion du piston et se propageant dans un fluide au repos. Derrière l’onde, le fluide est en mouvement
avec une vitesse d’intensité infinitésimale du générée par le piston, se déplaçant avec cette même vitesse.

Figure 6.10 – Onde de pression générée dans une conduite et représentation dans un référentiel fixe
par rapport à l’onde.

L’équation de conservation de quantité de mouvement en version intégrale appliquée à une surface de
contrôle englobant l’onde de pression dans un référentiel fixe par rapport à l’onde (Figure 6.10) conduit
à la relation suivante

A[p− (p+ dp)] = ρAa[(a− du)− a], (6.1)
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où A est l’aire de la section de la conduite et ρ la masse volumique du fluide traversé par l’onde. Après
simplification, on obtient l’équation d’Allievi (ingénieur Italien, 1856-1941)

dp = ρadu. (6.2)

Cette équation, aussi connue sous le nom d’équation du coup de bélier (water hammer equation) repré-
sente le saut en pression de part et d’autre d’une onde d’intensité infinitésimale en fonction de sa vitesse
de propagation et du saut en vitesse de l’écoulement. Il est à remarquer que dans un référentiel fixe par
rapport à l’onde, la vitesse de l’écoulement décroît en traversant l’onde. Cette équation a été largement
appliquée dans le domaine hydraulique pour la caractérisation des "coups de bélier" causés par des fer-
metures brusques de vannes. La validité de cette relation dans le domaine des coups de béliers repose
sur les faibles vitesses d’écoulement de liquide dans les conduites par rapport à la vitesse de propagation
des ondes de pression (vitesse égale la vitesse du son, comme on le verra ci-après).

Utilisation de l’équation de conservation de masse sous forme intégrale sur la surface de contrôle de
la Figure 6.10 mène au résultat suivant

ρa = (ρ+ dρ)(a− du), (6.3)

où ρ+ dρ est la masse volumique du fluide du côté comprimé, conduisant à

dρ

ρ
=
du

a
. (6.4)

Combinant ce résultat avec l’équation d’Allievi donne le résultat attendu

a2 =

(
∂p

∂ρ

)
s

, (6.5)

où le rapport dp/dρ a été remplacé par une dérivée partielle à entropie constante du fait des variations
infinitésimales de la pression et de la rapidité du processus de compression, deux caractéristiques qui sont
indicatrices d’un processus réversible et adiabatique. Ainsi, l’onde de pression infinitésimale se propage
à la vitesse du son du fluide qu’elle traverse.

Description physique de l’évolution de l’onde

Sur la Figure 6.11, le piston subit deux impulsions successives vers la droite dans une conduite unidi-
mensionnelle contenant initialement un fluide au repos. Une première fois, sa vitesse passe impulsivement
de 0 à du et est maintenue à cette vitesse pendant dt, une deuxième fois, sa vitesse passe de du à 2du.
L’évolution des deux ondes est alors suivie dans le temps. Le fluide dans la conduite est alors séparé en
trois zones : (i) zone (1) où le fluide est encore au repos ; (ii) zone (2) où le fluide a été traversé par la
première onde et se meut avec une vitesse du vers la droite ; (iii) zone (3) entre le piston et la deuxième
onde, qui a été traversée par les deux ondes et se meut vers la droite avec la vitesse du piston 2du.

La première onde se propage avec la vitesse du son a1, basée sur la température dans le fluide au
repos que l’onde traverse. Dès le passage de cette première onde, le fluide acquiert une vitesse du. De
plus, comme il y a eu une légère compression de dp, la température du fluide derrière l’onde (zone 2)
subit également une hausse en température de dT (l’écoulement est isentropique).

La deuxième onde va “surfer” un fluide déjà en mouvement avec la vitesse du. De ce fait, la vitesse
absolue de l’onde dans le référentiel de la conduite va être égale à a2 + du, où a2 est la vitesse du son
dans la portion de fluide située entre les deux ondes. Or, la température de cette portion de fluide a
augmenté de dT , et ainsi la vitesse du son dans cette zone est supérieure à a1 (dans un référentiel fixe
par apport au fluide).

Il en découle de ce scénario que la deuxième onde (se déplaçant à la vitesse a2 + du, avec a2 > a1) va
rattraper la première onde (se déplaçant à la vitesse a1). A un certain instant, il y aura coalescence des
deux ondes.

Si les impulsions du piston sont répétées plusieurs fois, avec un accroissement de la vitesse de du à
chaque impulsion, on obtient un mouvement uniformément accéléré du piston pour des impulsions du
et des temps de parcours dt infinitésimaux. Les ondes de pression isentropiques successives rattrapent
les ondes devant elles (suite à un accroissement de la vitesse du son ET de leur vitesse de “surf”) pour



6.2.1 Approche pragmatique : piston accéléré dans un fluide au repos 69

Figure 6.11 – Ondes de compression (à gauche) et de détente (à droite) générées par deux impulsions
successives d’un piston, vers la droite pour la compression et la gauche pour la détente.

former finalement une seule onde de pression avec une différence de pression non plus infinitésimale. Du
fait des grandes différences de pression et de température se produisant de part et d’autre de l’onde sur
une petite distance, l’écoulement n’est plus isentropique. Des phénomènes complexes faisant intervenir
la viscosité et un transfert de chaleur stabilisent alors cette onde en une onde de choc. La vitesse de cette
onde de choc n’est pas la vitesse de la première onde ni de la dernière : sa vitesse est déterminée par
l’équation de conservation de quantité de mouvement qui fait intervenir la vitesse finale du piston ainsi
que le ressaut en propriétés thermodynamiques de part et d’autre du choc.

Il est à remarquer qu’un phénomène similaire se produit avec des vagues de gravité sur la surface d’un
liquide. La vitesse de propagation des ondes est proportionnelle à la hauteur des différentes parties de la
vague (une partie plus haute étant plus rapide qu’une partie plus basse), et de ce fait les parties hautes
de la vague rattrapent les parties basses de la vague, pour donner finalement naissance aux “rouleaux”
(breakers) des surfeurs. Dans le cas des écoulements compressibles, il ne peut y avoir un rouleau car
une même partie de l’onde ne peut avoir deux pressions différentes (Figure 6.12). Une onde de choc se
produit en contrepartie.

Si maintenant, le piston se retire vers la gauche, le phénomène inverse se produit. La pression diminue
progressivement en proximité du piston, et les ondes successives voient leur vitesse diminuer du fait que
la vitesse du son décroît avec la pression et le fluide sur lequel ces ondes surfent se déplacent maintenant
dans le sens contraire. Ainsi, les ondes ne rattrapent jamais celles produites en premier : il n’y a pas
formation d’ondes de choc et l’écoulement reste isentropique éternellement. On a alors une onde de
détente (Figure 6.11 et Figure 6.12).

Analyse de l’évolution de l’onde

Les arguments descriptifs de la section précédente peuvent être mis sous forme analytique simple.
On considère une onde de pression continue se deplaçant vers la droite, comme schématisée sur la

Figure 6.13. En deux points proches, les propriétés de l’écoulement diffèrent par du, dp, dT , dρ, da, etc.
Les parties respectives de l’onde passant par ces points ont une différence de vitesse d’onde d’intensité
duw, où l’indice w dénote l’onde (wave en anglais). L’analyse est similaire à celle de la section précédente,
où les variations continues des propriétés peuvent être discrétisées en variations infinitésimales. Comme
précédemment, on fait l’hypothèse que l’écoulement est isentropique. Ainsi, chaque portion d’onde se
propage à une vitesse égale à la vitesse du son locale du fluide qu’elle traverse (dans le référentiel du
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Figure 6.12 – Evolution d’une onde de pression : onde de compression, devenant un choc ; onde de
détente, restant isentropique.

Figure 6.13 – Analyse de l’évolution de l’onde.
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fluide). Dans un référentiel fixe par rapport à la conduite, la vitesse de l’onde est alors égale à

uw = u+ a, (6.6)

alors que la vitesse de l’onde adjacente est égale à

uw + duw = u+ du+ a+ da, (6.7)

d’où il découle que
duw = du+ da. (6.8)

L’objectif est de savoir si des ondes adjacentes se déplacent à des vitesses similaires ou différentes. On
forme alors le rapport

duw
dp

=
du

dp
+
da

dp
. (6.9)

Or, la formule d’Allievi nous dit que
du

dp
=

1

ρa
. (6.10)

La variation de la vitesse du son a avec la pression p à entropie constante (qui est notre cas) a été obtenu
dans le Chapitre 4, Equation 4.19, que nous rappelons ici (avec v = 1/ρ)(

∂a2

∂p

)
s

= 2a

(
∂a

∂p

)
s

= 2v

[
a4

2v3

(
∂2v

∂p2

)
s

− 1

]
, (6.11)

où, comme dans le Chapitre 4, on peut introduire la dérivée fondamentale de la dynamique des gaz
(fundamental gasdynamic derivative), dénotée par le symbole Γ,

Γ =
a4

2v3

(
∂2v

∂p2

)
s

, (6.12)

ce qui donne (
∂a

∂p

)
s

=
v

a
(Γ− 1) . (6.13)

La variation de la vitesse d’onde avec une variation de pression s’obtient alors facilement en insérant
l’équation 6.13 et l’équation 6.10 dans la formule 6.9

duw
dp

= Γ
v

a
=

Γ

ρa
. (6.14)

Ainsi, il en ressort que la vitesse de l’onde variera avec la variation de pression selon le signe de Γ.
Or, le Chapitre 4 a fait ressortir que Γ > 1 pour les fluides connus (en particulier, Γ = (γ + 1)/2 pour
les gaz parfaits, avec γ > 1 typiquement).

Ainsi, pour des fluides normaux (Γ > 0), la vitesse d’onde augmente (diminue) toujours quand la
pression augmente (diminue). Ainsi, un piston en accélération, créant une augmentation progressive de
la pression, génèrera des ondes de pression toujours plus rapides qui rattraperont celles qui les précèdent
pour donner naissance à une onde de choc.

Il est à remarquer que si pour un fluide on avait Γ < 0, l’effet contraire se produirait. Une accélération
du piston créerait des ondes de plus en plus lentes avec l’augmentation de pression (duw/dp < 0), et il
ne pourrait pas y avoir de coalescence d’ondes et donc d’onde de choc. Par contre, si le piston se retire,
créant une diminution progressive de la pression, les ondes de détente successives verraient leur vitesse
diminuer, et les ondes produites en premier rattraperaient les ondes produites en dernier, créant alors
un choc de détente ou de raréfaction. Ce phénomène ne peut se produire que dans des cas ésotériques,
comme dans certains cas pour un fluide sous forme de plasma ou ptoche du point critique.

Dans le cas intermédiaire Γ = 0, des ondes de chocs ne peuvent jamais se former car toutes les ondes
ont la même vitesse. Ceci ne peut se produire dans un gaz parfait, car cela donnerait un rapport de
chaleurs spécifiques γ égal à −1 !

Une petite remarque concerne le signe de Γ qui, selon son expression (Equation 6.12), dépend de
la courbure (proportionnelle à d2v/dp2) d’une isentrope dans le diagramme P − v d’un fluide. Pour les
fluides normaux, la courbure de ces isentropes est toujours positive (isentrope concave), mais proche du
point critique, les isentropes révèle parfois un point d’inflexion avec un changement de courbure (Figure
6.14).
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Figure 6.14 – Comportement de la dérivée fondamentale, Γ, proche du point critique.

Stabilisation de l’onde de choc et génération d’entropie

La description précise des phénomènes à l’intérieur d’une onde de choc sont très complexes : l’objectif
ici est de comprendre les facteurs physiques déterminants au sein d’une telle onde. Alors que de part et
d’autre du choc l’écoulement est isentropique (sans frottement et adiabatique), il n’en est pas de même
à l’intérieur du choc : les variations brusques de vitesse engendre des effets visqueux et thermiques qui
ne peuvent pas être négligés. Il y a ainsi génération d’entropie lors de la traversée d’une onde de choc,
qui sera évaluée dans le chapitre suivant.

Comme l’écoulement n’est pas isentropique, l’équation de conservation de quantité de mouvement
(qui fait intervenir les contraintes visqueuses) et l’équation de conservation d’énergie (qui fait intervenir
les échanges thermiques ainsi que les dissipations visqueuses) sont distinctes. Un équilibre s’établit entre
les forces inertielles qui tendent à raidir le profil et les forces visqueuses qui ont la tendance contraire
d’adoucir les variations brusques. Au chapitre suivant, une estimation de l’épaisseur de l’onde de choc
sera donnée en imposant cet équilibre.

6.2.2 Approche théorique

Afin d’appréhender la manière dont se forment les ondes de choc et de détente, supposons que nous
soyons capables d’engendrer, dans un domaine monodimensionnel, une perturbation de vitesse u(x) au
temps initial t = t1 telle que celle représentée par la Figure 6.15. Etudions la propagation de cette
perturbation en supposant que l’évolution thermodynamique du gaz soit isentrope.

Pour étudier la propagation, nous devons écrire les équations de conservation de la masse et de la
quantité de mouvement qui, compte tenu des hypothèses, deviennent

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0.

(6.15)

Comme l’écoulement est isentrope, les variables p et u peuvent être considérées comme des fonctions de
ρ uniquement. Ainsi, les relations (6.15) s’écrivent sous la forme

dρ

du

∂u

∂t
+ u

dρ

du

∂u

∂x
+ ρ

∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+

1

ρ

dp

dρ

dρ

du

∂u

∂x
= 0,

(6.16)
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Figure 6.15 – Profil de vitesse d’une onde en un instant particulier.

soit  dρ

du
u
dρ

du
+ ρ

1 u+
1

ρ

dp

dρ

dρ

du


 ∂u

∂t
∂u

∂x

 =

 0

0

 , (6.17)

ce qui constitue un système de deux équations homogènes. Le déterminant doit être nul pour qu’elles
soient compatibles. Nous obtenons ainsi

1

ρ

dp

dρ

(
dρ

du

)2

− ρ = 0 ←→ du

dρ
= ±1

ρ

(
dp

dρ

) 1
2

, (6.18)

dont nous déduisons la relation entre u et ρ

u = ±
∫ (

dp

dρ

) 1
2 dρ

ρ
. (6.19)

En se servant du fait que la propagation de la perturbation est supposée isentrope, nous avons en vertu
de la définition de la vitesse du son (2.67)(

dp

dρ

)
=

(
dp

dρ

)
s

= a2 =
γp

ρ
= kγργ−1, (6.20)

où la dernière égalité est obtenue en utilisant la relation isentrope (2.115). Nous pouvons maintenant
évaluer la valeur de u par la relation (6.19) en utilisant (6.20)

u =

∫ ρ

ρ0

(
kγργ−1

) 1
2
dρ

ρ
=

2

γ − 1
(kγ)

1
2

[
ρ

γ−1
2

]ρ
ρ0
, (6.21)

soit finalement

u =
2

γ − 1

[(
kγργ−1

) 1
2 −

(
kγργ−1

0

) 1
2

]
=

2

γ − 1
[a− a0] . (6.22)

Si nous introduisons maintenant l’expression (6.18) dans la seconde relation (6.16), nous avons en choi-
sissant le signe positif

∂u

∂t
+

(
u +

(
dp

dρ

) 1
2

)
∂u

∂x
= 0, (6.23)

puis, en se servant à nouveau de (6.20), l’équation (6.23) devient

∂u

∂t
+ (u+ a)

∂u

∂x
= 0. (6.24)
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Il est possible de trouver une interprétation à cette relation en cherchant la condition pour que u, et
par suite ρ, restent constants au cours du temps, lors du déplacement de la perturbation. Ecrivons la
variation du = 0, sous la forme

∂u

∂t
+
dx

dt

∂u

∂x
= 0, (6.25)

dont la comparaison avec (6.23) permet d’écrire

dx

dt
= u+ a. (6.26)

Cela signifie qu’une perturbation pour laquelle u à la valeur donnée par (6.19) se propage de telle façon
que u et ρ restent constants en des points qui se déplacent à la vitesse u + a. En se servant de (6.22),
(6.26) devient

dx

dt
= u+ a = a0 +

γ + 1

2
u, (6.27)

qui permet d’étudier l’évolution de la pertubation (Fig. 6.15). Prenons un point P1 sur la perturbation au
temps t = t1 et soit uP la vitesse du fluide en ce point. Considérons aussi le point Q1 sur la perturbation
au temps t = t1 et soit uQ la vitesse du fluide en ce point. D’après (6.27), les vitesses de déplacement de
P1 et Q1 valent respectivement (

dx

dt

)
P1

= a0 +
γ + 1

2
uP ,

(
dx

dt

)
Q1

= a0 +
γ + 1

2
uQ.

(6.28)

Au temps t = t2, P1 est en P2 et Q1 est en Q2. La distance entre deux points successifs est ainsi exprimée
par

P1P2 =

(
a0 +

γ + 1

2
uP

)
(t2 − t1),

Q1Q2 =

(
a0 +

γ + 1

2
uQ

)
(t2 − t1),

(6.29)

soit, de manière plus générale

PnPn−1 =

(
a0 +

γ + 1

2
uP

)
(tn − tn−1),

QnQn−1 =

(
a0 +

γ + 1

2
uQ

)
(tn − tn−1).

(6.30)

Par conséquent, si la vitesse uQ est supérieure à uP , le segment Q1Q2 est plus grand que le segment
P1P2. La courbe (c) se déforme selon la Figure 6.16. La portion (c1) de (c) comprise entre A et B, dont
la pente est positive, s’allonge tandis que la portion (c2), dont la pente est négative se raidit.

Un observateur placé en x = x1 quelconque, voit u augmenter lorsque (c2) le dépasse et u diminuer
lorsque (c1) le dépasse. Or, si u croît, a croît également et par suite ρ et p croissent. En d’autres termes,
(c2) est une onde de compression et (c1) une onde de détente. A des instants ultérieurs, la courbe (c)
prend la forme (c′). Pour cette position, il existerait pour une même valeur de x plusieurs valeurs de u, ce
qui est physiquement impossible. A partir du moment où la branche (c2) est devenue verticale, l’évolution
n’est plus isentrope et le raisonnement précédent n’est plus valable puisque les équations utilisées ne le
sont que pour des écoulements isentropes. En fait, la déformation de l’onde ne se poursuit plus au delà
du moment où la branche correspond à une discontinuité de la vitesse u, de la pression p et de la masse
volumique ρ se produisant dans une couche très mince. La branche (c2) s’est transformée en une onde
de choc d’intensité finie. Ainsi, une onde de compression se transforme au bout d’un certain temps en
une onde de choc, tandis que l’onde de détente ne devient jamais une discontinuité.
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Figure 6.16 – Evolution de la perturbation

Remarque Est-il possible que l’onde se propage sans déformation ? Pour qu’il en soit ainsi, il faudrait
que dx

dt soit constant quelque-soit le point P sur la courbe (c). Ceci impliquerait que

a0 +
γ + 1

2
u = const (6.31)

Or, ceci n’est possible que si γ = −1, ce qui n’est vérifié par aucun fluide réel.
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Chapitre 7

Ondes de choc droites

Alors que le chapitre précédent a cherché à justifier l’existence d’une tendance vers la formation
d’ondes de choc, le chapitre présent part de l’hypothèse que le choc a été formé, en mettant de côté la
physique complexe du processus de formation et de stabilisation du choc. En particulier, la structure
interne du choc n’interviendra pas dans ce Chapitre. L’étude se base sur des observations expérimentales
selon lesquelles les chocs existent bel et bien, et qu’ils couvrent une région dans l’espace en forme de
lamelle de petite épaisseur (variant du micron au millimètre), traversée par de la matière (un fluide), à
l’intérieur de laquelle se produisent des variations brusques des propriétés cinématiques, mécaniques, et
thermodynamiques. Comme il a été observé expérimentalement que cette région est très fine, la théorie
qui suit idéalise le choc comme une surface de discontinuité dans l’espace. Cette idéalisation ne nuit en
rien à la théorie et permet d’obtenir des résultats largement vérifiés par l’expérience pour les propriétés
des régions de part et d’autre du choc.

7.1 Equations de conservation pour les ondes de choc

L’écoulement à travers un choc doit satisfaire les principes de conservation de la masse, de la quantité
de mouvement et de l’énergie. L’application de ces conditions sous forme intégrale conduira à un ensemble
d’équations qui sont les équations du choc ou conditions de choc.

7.1.1 Choix du référentiel

Par définition, une onde de choc droite est une onde normale à l’écoulement. En particulier, l’écou-
lement est normal de part de d’autre du choc. Comme observé dans le chapitre précédent, une onde de
choc peut être stationnaire ou en mouvement par rapport à l’observateur. L’étude d’une onde de choc
peut être faite dans un référentiel arbitraire, mais l’analyse s’en trouve grandement simplifiée quand le
référentiel est choisi comme étant fixe par rapport au choc. Le choc a alors une vitesse nulle, et est alors
traversé par un écoulement normal à l’onde, venant d’amont et se déversant vers l’aval.

Figure 7.1 – Référentiel choisi comme fixe par rapport à l’observateur.

Dans un référentiel fixe par rapport au choc, les vitesses d’écoulement seront dénotées par le symbole
w. Dans un référentiel particulier, la vitesse du choc est égale à us (que l’on prend normale au choc
pour l’instant) et les vitesses des écoulements sont égales à u1 et u2, choisies également normales au
choc (Figure 7.1). Pour l’instant ces vecteurs vitesses sont d’orientation et de module arbitraire. Dans un
référentiel fixe par rapport au choc, les vecteurs vitesse des écoulements peuvent alors s’exprimer comme
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suit

w1 = u1 − us, (7.1)

w2 = u2 − us. (7.2)

Ce schéma est très général. Il s’applique aux différents cas particuliers présentés dans le chapitre
précédent.

* Pour une explosion où l’observateur est fixe, le choc se déplace dans un milieu au repos (u1 = 0).
* Pour une vanne se fermant brusquement dans une conduite hydraulique, la vitesse entre le choc et

la vanne est nulle (u2 = 0) tandis que la vitesse en amont u1 est celle du fluide dans la conduite avant
la fermeture de la vanne.

* Pour un ressaut hydraulique remontant une rivière, le schéma est tel qu’il est présenté sur la Figure
7.1, avec u1 étant la vitesse de la rivière par rapport à la berge et us la vitesse du ressaut par rapport à
la berge également.

* Pour des skieurs en collisions, le schéma est identique à celui de la fermeture de vanne dans une
conduite.

7.1.2 Volume de contrôle

On choisit un volume de contrôle englobant le choc, comme illustré sur la Figure 7.2 ci-dessous.

Figure 7.2 – Volume de contrôle

Le volume de contrôle est choisi comme coïncidant instantanément avec le choc. L’écoulement ne doit
pas être nécessairement permanent pour ce qui suit. En particulier, le choc pourrait accélérer.

Comme les variations des propriétés de l’écoulement se font essentiellement à l’intérieur du choc, les
deux faces du volume de contrôle parallèles au choc peuvent être choisies arbitrairement proche du choc
afin que les intégrations sur ces faces (extérieures au choc) ne fassent intervenir que des quantités en
amont et en aval du choc.

Si ces deux faces parallèles au choc (S1 et S2) sont infiniment proches (à une distance un peu plus
grande que l’épaisseur du choc), le volume de contrôle devient très petit. Ce choix nous permet de négliger
les termes faisant intervenir des intégrations sur le volume

De plus, les intégrations sur les faces perpendiculaires au choc (les bords du volume de contrôle,
Sb) sont également négligeables. Comme ces faces intersectent le choc, de forts gradients (inconnus, de
surcroît) existent le long de cette face, mais l’aire de cette face étant largement négligeable par rapport
à l’aire des faces parallèles au choc, les intégrations le long des bords peuvent être négligées.

D’une manière rigoureuse, si L est une dimension caractéristique de la face parallèle au choc, alors
une dimension caractéristique de la face sur les bords sera ϵL, où ϵ est infiniment petit. Ainsi, le rapport
des aires sera ϵ quelle que soit la valeur de L. En particulier, il faudra parfois choisir L assez petit afin
qu’il n’y ait pas de variations locales (dues à la courbure du choc par exemple).
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7.1.3 Conservation de la masse
On utilise l’équation de conservation de la masse sous la forme (Equation 3.1)

∂

∂t

∫
V

ρdV +

∫
S

ρu · n̂ dS = 0. (7.3)

En se plaçant dans un référentiel coïncidant avec le choc, le vecteur vitesse devient u = w. Le premier
terme contenant la dérivée temporelle peut être négligé selon les critères énoncés précédemment. De
même, toute intégration sur les “bords” est également négligeable. Ainsi, on se retrouve avec la relation∫

S1,S2

ρw · n̂ dS = 0, (7.4)

laquelle devient

−
∫
S1

ρwndS +

∫
S2

ρwndS = 0, (7.5)

où wn est la composante de w perpendiculaire au choc, wn = w · n̂. Il est à remarquer comment le
vecteur unitaire n̂ change de sens en traversant le choc, ce qui conduit à un changement de signe pour le
produit scalaire w · n̂ de part et d’autre du choc (w ne change pas de sens). Comme les faces sont prises
assez petites pour que les propriétés soient uniformes de part et d’autre du choc le long de ces faces, et
que les deux surfaces S1 et S2 ont la même aire (du fait qu’elles soient très proches l’une de l’autre), on
a alors

ρ1wn,1 = ρ2wn,2. (7.6)

Cette relation représente la conservation de masse à travers le choc. On peut la réécrire en exprimant la
différence ou saut d’un paramètre quelconque à travers un choc. Ce saut est représenté avec une notation
conventionnelle faisant intervenir des crochets. Ainsi, le saut du débit massique, par unité surface de
choc, peut être écrit [ρwn]

[ρwn] = ρ2wn,2 − ρ1wn,1, (7.7)

qui, dans le cas présent, est nul
[ρwn] = 0. (7.8)

7.1.4 Conservation de la quantité de mouvement
D’une manière similaire, on utilise l’équation de conservation de quantité de mouvement sous forme

intégrale (Equation 3.4)

∂

∂t

∫
V

ρudV +

∫
S

ρu (u · n̂) dS = −
∫
S

pn̂ dS +

∫
S

T · n̂ dS +

∫
V

ρfdV, (7.9)

où T représente le tenseur des contraintes visqueuses et f le vecteur des forces volumiques. L’intégration
sur le volume de la quantité de mouvement(celle faisant intervenir une dérivée par rapport au temps)
peut être négligée du fait d’un volume choisi comme infiniment petit (il ne peut pas y avoir de stockage
de quantité de mouvement). Par le même argument, l’intégrale volumique des forces de volume (gravité)
est négligeable pour un volume infiniment petit. Comme les faces S1 et S2 sont choisi hors du choc, les
contraintes visqueuses y sont négligeables (par hypothèse l’écoulement est isentropique de part et d’autre
du choc). Le choix d’un volume de contrôle très fin permet d’éliminer les termes faisant intervenir des
intégrations sur les bords (Sb), ce qui est commode car les contraintes visqueuses y sont conséquentes et
non connues. Ainsi ∫

S1,S2

ρw (w · n̂) dS = −
∫
S1,S2

pn̂ dS. (7.10)

La composante le long de l’écoulement produit alors

−ρ1wn,1wn,1 + ρ2wn,2wn,2 = p1 − p2, (7.11)

ou
p1 + ρ1w

2
n,1 = p2 + ρ2w

2
n,2, (7.12)
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qui peut s’écrire [
p+ ρw2

n

]
= 0. (7.13)

Une remarque très importante concerne la forme de cette relation : bien qu’elle ait une ressemblance
trompeuse avec la relation de Bernoulli pour les écoulements incompressibles (elle ne contient pas de
facteur 1/2 devant w2

n), elle est absolument distincte de cette dernière. Pour commencer, l’écoulement
traversant le choc est compressible. D’autre part, alors que la relation de Bernoulli est obtenue pour un
écoulement isentropique le long d’une ligne de courant, la relation présente a été obtenue par conservation
de quantité de mouvement de part et d’autre du choc, et non le long d’une ligne de courant (qui,
elle, traverserait le choc où les frottements et les transferts de chaleur feraient échouer la condition
d’isentropie). Finalement, le terme ρw2

n représente un débit de quantité de mouvement au travers d’une
surface, alors que le terme de Bernoulli 1/2w2

n est une énergie cinétique le long d’une ligne de courant.

7.1.5 Conservation de l’énergie
A partir de l’équation de conservation d’énergie (Equation 3.26)

∂

∂t

∫
V

ρe0 dV +

∫
V

∇ · (ρe0u) dV =

∫
V

∇ · (σ · u) dV +

∫
V

ρ (f · u) dV −
∫
V

∇ · q dV +

∫
V

r dV, (7.14)

on réécrit les intégrales de volume sous forme d’intégrales de surface

∂

∂t

∫
V

ρe0 dV +

∫
S

(ρe0u) · n̂ dS = −
∫
S

pu · n̂ dS+
∫
S

(T · u) · n̂ dS+
∫
V

ρ (f · u) dV −
∫
S

q · n̂ dS+
∫
V

r dV,

(7.15)
où

e0 = e+
1

2
u2. (7.16)

Comme précédemment, on néglige l’intégrale volumique de l’énergie (faisant intervenir la dérivée
temporelle) comme le volume V est pris comme étant infiniment petit. Il en est de même des intégrales
sur les surface du bord Sb (prises comme infiniment petites), qui, il faut le noter, font intervenir du travail
de frottement et de la transmission de chaleur (là où la surface Sb traverse le choc). Sur les surfaces S1

et S2, l’écoulement y est considéré comme isentropique, et ainsi les termes visqueux et de transmission
de chaleur sont nuls sur ces surfaces. Il reste les termes faisant intervenir les forces volumiques et le
rayonnement. L’intégrale volumique du travail des forces volumiques sur un volume infiniment petit peut
être pris comme nul. En ce qui concerne le terme de rayonnement, l’expérience montre que les chocs ne
rayonnent que très peu, et que, de plus, si ce rayonnement est sommé sur un volume infiniment petit, le
résultat est pratiquement nul. Ainsi∫

S1,S2

(ρe0u) · n̂ dS = −
∫
S1,S2

pu · n̂ dS, (7.17)

qui peut se réécrire dans le repère du choc (pour des surface S1 et S2 égales)

ρ2

(
e2 +

w2
n,2

2

)
wn,2 − ρ1

(
e1 +

w2
n,1

2

)
wn,1 = −p2wn,2 + p1wn,1. (7.18)

En introduisant l’enthalpie h = e+ p/ρ

ρ1

(
h1 +

w2
n,1

2

)
wn,1 = ρ2

(
h2 +

w2
n,2

2

)
wn,2, (7.19)

et en invoquant la conservation de masse, on obtient alors

h1 +
w2
n,1

2
= h2 +

w2
n,2

2
, (7.20)

ou [
h+

w2
n

2

]
= 0. (7.21)
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7.1.6 Entropie
Le deuxième principe de la thermodynamique appliqué au volume de contrôle impose la condition

[s] > 0. (7.22)

7.2 Propriétés des ondes de choc
Les relations fondamentales des ondes de choc sont donc les suivantes

[ρwn] = 0, (7.23)[
p+ ρw2

n

]
= 0, (7.24)[

h+
w2
n

2

]
= 0. (7.25)

[s] > 0. (7.26)

Si nous combinons les équations de conservation de la masse et de la quantité de mouvement, il est
possible d’écrire la relation

wn,1wn,2 =
[p]

[ρ]
, (7.27)

dans laquelle nous faisons apparaître le flux de masse j = ρ1wn,1 = ρ2wn,2 après multiplication par ρ1ρ2
de manière à obtenir

j2 = − [p]

[v]
, (7.28)

où v = 1/ρ est le volume massique.
On définit le nombre de Mach du choc (shock Mach number Mn,1)

Mn,1 ≡
wn,1
a1

. (7.29)

La combinaison de la conservation de la masse et de la quantité de mouvement conduit alors au rapport
adimensionnel du saut de pression à travers le choc

Π =
[p]

ρ1a21
= −Mn,1

[wn]

a1
= −M2

n,1

[v]

v1
, (7.30)

où la dernière égalité est obtenue à l’aide de (7.28) et de la définition du flux massique j. Nous en
déduisons la relation

[wn]
2
= − [p] [v] . (7.31)

Par définition, la valeur numérique de Π est une mesure de l’intensité du choc. Parfois, la définition
Π

′
= [p]

p1
est aussi utilisée. Les deux cas extrêmes en termes d’intensité de choc sont les chocs forts et les

chocs faibles.

Choc faible Dans le cas d’un choc faible, nous avons la condition Π≪ 1 ce qui implique, en vertu de
(7.30), les conditions

− [wn]

a1

− [v]

v1
Mn,1 − 1

≪ 1 (7.32)

Choc fort Dans le cas d’un choc fort, nous avons la condition Π ≫ 1 ce qui implique, en vertu de
(7.30), les conditions

− [wn]

a1

− [v]

v1
Mn,1 − 1

≫ 1 (7.33)
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7.2.1 Equation de Rankine-Hugoniot

Considérons l’équation de conservation de l’énergie à travers un choc (7.25) et écrivons la sous la
forme

h2 − h1 =
1

2
(wn,1 − wn,2) (wn,1 + wn,2) , (7.34)

puis celle de quantité de mouvement (7.24) récrite comme la différence

wn,1 − wn,2 =
p2 − p1
ρ1wn,1

, (7.35)

et enfin la conservation de la masse (7.23) exprimée comme la somme

wn,2 + wn,1 =

(
1

ρ1
+

1

ρ2

)
ρ1wn,1. (7.36)

Par substitution de (7.35) et (7.36) dans (7.34), il vient

h2 − h1 =
1

2

p2 − p1
ρ1wn,1

(
1

ρ1
+

1

ρ2

)
ρ1wn,1 =

p2 − p1
2

(
1

ρ1
+

1

ρ2

)
, (7.37)

qui ne contient plus que des grandeurs thermodynamiques. Si p1, ρ1 sont connues et si la fonction
h2 = h2(p2, ρ2) est donnée à partir d’une équation d’état, cette relation se réduit à p2 = p2(ρ2). C’est
la relation du choc adiabatique ou adiabate dynamique d’un gaz, aussi nommé équation de Rankine-
Hugoniot.

7.2.2 Variation d’entropie à travers un choc faible

L’équation de Rankine-Hugoniot peut être réécrite sous la forme suivante

[h] = v1 [p] +
1

2
[v] [p] . (7.38)

Un développement de Taylor de h(s, p) et v(s, p) et l’utilisation des identités thermodynamiques suivantes

T =

(
∂h

∂s

)
p

, (7.39)

v =

(
∂h

∂p

)
s

, (7.40)

conduit à la relation importante suivante

[s] =
1

12T1

(
∂2v

∂p2

)
s

[p]
3
+O

(
[p]

4
)
. (7.41)

Sous forme non-dimensionnelle, cette dernière expression s’écrit sous la forme

T1 [s]

a21
=

1

6
Γ1Π

3 +O
(
Π4
)
, (7.42)

où la dérivée fondamentale a déjà été introduite

Γ =
a4

2v3

(
∂2v

∂p2

)
s

. (7.43)

Ainsi, si [s] > 0 selon le second principe de la thermodynamique, alors le signe de Π doit être égal au
signe de la dérivée fondamentale pour des chocs faibles. Comme pour la plupart des fluides Γ > 0, alors
seuls des chocs de compression (et non de détente) sont possibles. Ceci reste vrai pour des chocs forts
(démonstration dans Landau and Lifshitz, 1997).
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7.3 Relations entre variables thermodynamiques de part et d’autre
du choc pour un gaz parfait

Considérons l’onde de choc droite de la Figure 7.2. A l’amont du choc (région 1), l’écoulement est
uniforme et, à l’aval dans la région 2, l’écoulement est lui aussi uniforme mais les variables d’état sont
différentes après la surface de discontinuité. La pression, la vitesse, la masse volumique, l’enthalpie et la
température de la région 1 subissent la varation

p1 → p2,
wn,1 → wn,2,
ρ1 → ρ2,
h1 → h2,
T1 → T2,

(7.44)

entre les régions 1 et 2. Dès lors, le problème du choc droit peut s’énoncer de la manière suivante. Etant
données les grandeurs p1, wn,1, ρ1, h1, T1 connues à l’amont, déterminer les grandeurs p2, wn,2, ρ2, h2,
T2 à l’aval du choc. Pour la résolution de ce problème, nous utilisons les équations de conservation ainsi
que les équations constitutives.

Tout d’abord, introduisons les nombres de Mach Mn,1 et Mn,2 en amont et en aval du choc

Mn,1 =
wn,1
a1

et Mn,2 =
wn,2
a2

, (7.45)

puis rappelons qu’à l’aide de la vitesse du son dans un gaz parfait, nous pouvons écrire

w2 = a2M2 = γrTM2. (7.46)

En utilisant l’équation de conservation de l’énergie pour une onde de choc (7.25), la relation thermody-
namique (2.98) ainsi que celle liant cp à γ et r (2.101), nous avons

γ

γ − 1
rT1 +

1

2
γrT1M

2
n,1 =

γ

γ − 1
rT2 +

1

2
γrT2M

2
n,2, (7.47)

dont nous déduisons que

T1

(
1 +

γ − 1

2
M2
n,1

)
= T2

(
1 +

γ − 1

2
M2
n,2

)
. (7.48)

En comparant cette relation à l’équation (4.29) exprimant la température totale T0 en fonction de la
température statique T rappellée ici

T0 = T

(
1 +

γ − 1

2
M2

)
, (7.49)

nous aboutissons au résultat déjà connu
T0,1 = T0,2, (7.50)

traduisant le fait que la température totale ne change pas à travers le choc. Avec (7.48), nous obtenons
le rapport des températures de part et d’autre du choc

T2
T1

=

(
1 + γ−1

2 M2
n,1

)(
1 + γ−1

2 M2
n,2

) , (7.51)

qui permet d’obtenir, avec la vitesse du son et la relation thermodynamique (2.98)

a22
a21

=
h2
h1

=

(
1 + γ−1

2 M2
n,1

)(
1 + γ−1

2 M2
n,2

) . (7.52)

Ensuite, l’utilisation de l’équation de conservation de la quantité de mouvement (7.24) et celle de l’équa-
tion d’état permet d’écrire

ρ1rT1 + ρ1γrT1M
2
n,1 = ρ2rT2 + ρ2γrT2M

2
n,2, (7.53)
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où la définition du nombre de Mach (7.45) a aussi été introduite. La relation précédente s’écrit aussi

ρ1T1
(
1 + γM2

n,1

)
= ρ2T2

(
1 + γM2

n,2

)
. (7.54)

Par conséquent, le rapport des masses volumiques s’écrit

ρ2
ρ1

=

(
1 + γM2

n,1

) (
1 + γ−1

2 M2
n,2

)(
1 + γM2

n,2

) (
1 + γ−1

2 M2
n,1

) =
wn,1
wn,2

, (7.55)

où la dernière égalité est obtenue par conservation de la masse (7.23). Puis, en utilisant l’équation d’état,
nous déduisons de la relation précédente le rapport des pressions

p2
p1

=
ρ2
ρ1

T2
T1

=

(
1 + γM2

n,1

)(
1 + γM2

n,2

) . (7.56)

Nous avons ainsi résolu le problème du choc droit puisque tous les rapports entre variables d’état ont été
exprimées. Cependant, il reste une inconnue : le nombre de Mach Mn,2 qui peut être éliminé en utilisant
la conservation de la masse. Ainsi, en élevant l’équation de consrvation de masse (Equation 7.23) au carré
et en utilisant l’expression de la vitesse du son ainsi que la définition du nombre de Mach, nous avons

ρ21T1M
2
n,1 = ρ22T2M

2
n,2, (7.57)

puis en utilisant les résultats pour p2
p1

et T2

T1

M2
n,2

(
1 + γ−1

2 M2
n,2

)(
1 + γM2

n,2

)2 =
M2
n,1

(
1 + γ−1

2 M2
n,1

)(
1 + γM2

n,1

)2 . (7.58)

L’équation est quadratique en M2
n,2 et M2

n,1. Les deux solutions s’écrivent

M2
n,2 =

1 + γ−1
2 M2

n,1

γM2
n,1 −

γ−1
2

et M2
n,2 =M2

n,1, (7.59)

dont seule la première est intéressante. Ainsi, en utilisant (7.59) pour éliminer Mn,2 dans les relations
exprimant les rapports entre variables d’état, nous avons

p2
p1

=
2

γ + 1

(
γM2

n,1 −
γ − 1

2

)
= 1 +

2γ

γ + 1

(
M2
n,1 − 1

)
, (7.60)

T2
T1

=
h2
h1

=

(
2

γ + 1

)2
1

M2
n,1

(
1 +

γ − 1

2
M2
n,1

)(
γM2

n,1 −
γ − 1

2

)
, (7.61)

ρ2
ρ1

=
wn,1
wn,2

=
γ + 1

2

M2
n,1

1 + γ−1
2 M2

n,1

. (7.62)

Nous remarquons que p2, wn,2, ρ2, h2, T2 peuvent s’exprimer uniquement en fonction des grandeurs
physiques à l’amont. D’autres rapports obtenus à l’aide des relations (4.29), (4.31) et (4.32), associées
aux grandeurs totales, peuvent être utiles

T0,2
T0,1

=
T2
T1

1 + γ−1
2 M2

n,2

1 + γ−1
2 M2

n,1

= 1, (7.63)

p0,2
p0,1

=
ρ0,2
ρ0,1

=
p2
p1

{
1 + γ−1

2 M2
n,2

1 + γ−1
2 M2

n,1

} γ
γ−1

=

(
γ+1
2

) γ+1
γ−1 M

2γ
γ−1

n,1{
1 + γ−1

2 M2
n,1

} γ
γ−1

{
γM2

n,1 −
γ−1
2

} 1
γ−1

, (7.64)

traduisant une perte de pression totale due au choc. Ainsi, la pression totale p0 ne reste pas constante
quand l’écoulement traverse un choc, contrairement à la température totale T0. Les variations des para-
mètres sont représentés sur la Figure 7.3.
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Figure 7.3 – Rapport des paramètres de part et d’autre du choc en fonction du nombre de Mach du
choc.

7.3.1 Accroissement d’entropie à travers un choc
Pour calculer la variation d’entropie au travers du choc, utilisons la relation (2.105) qui s’écrit sous

la forme
s2 − s1 = cp ln

[
T2
T1

]
− r ln

[
p2
p1

]
. (7.65)

D’une part, nous pouvons écrire

s2 − s1 = s0,2 − s0,1 = cp ln

[
T0,2
T0,1

]
− r ln

[
p0,2
p0,1

]
= −r ln

[
p0,2
p0,1

]
, (7.66)

où la dernière égalité est obtenue avec (7.50). Nous en déduisons que

p0,2
p0,1

= exp−
(s2−s1)

r . (7.67)

Nous remarquons immédiatement que si s2 − s1 > 0, la pression totale p0 décroit à travers le choc.
D’autre part, les expressions (7.65), (7.61) et (7.62) permettent d’obtenir

s2 − s1 = cv ln

{[
1 +

2γ

γ + 1

(
M2
n,1 − 1

)] [
1− 2

γ + 1

M2
n,1 − 1

M2
n,1

]γ}
, (7.68)

reflétant ainsi le fait que la différence s2 − s1 à travers le choc ne dépend que de Mn,1. La variation
d’entropie à travers le choc est représentée sur la Figure 7.4.

Or, la seconde loi de la thermodynamique implique

s2 − s1 ≥ 0 (7.69)

Avec la relation (7.68), nous voyons que

Mn,1 ≥ 1 → s2 − s1 ≥ 0,
Mn,1 < 1 → s2 − s1 < 0,

(7.70)
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Figure 7.4 – Variation d’entropie à travers le choc pour un gaz parfait (γ = 1.4).

où seule la première relation vérifie le second principe. Par conséquent, seuls les cas Mn,1 ≥ 1 sont
valides traduisant le fait que les chocs ne peuvent apparaître que dans un écoulement supersonique. Nous
pouvons encore le montrer par le raisonnement suivant. Il suffit de poser M2

n,1 = 1 + ε, avec ε ≪ 1 de
sorte que (7.68) devienne

s2 − s1 = cv ln

{(
1 +

2γ

γ + 1
([1 + ε]− 1)

] [
1− 2

γ + 1

(1 + ε)− 1

(1 + ε)

]γ}
(7.71)

puis d’effectuer un développement en série de Taylor

s2 − s1 = cv

{[
2γ

γ + 1
ε− 1

2

(
2γ

γ + 1
ε

)2

+
1

3

(
2γ

γ + 1
ε

)3

+ ...

]}

+cv

{
γ

[
− 2ε

(γ + 1) (1 + ε)
− 1

2

(
2ε

(γ + 1) (1 + ε)

)2

− 1

3

(
2ε

(γ + 1) (1 + ε)

)3

+ ...

]}
,

(7.72)

dont nous déduisons,

s2 − s1 = cv
2

3

γ (γ − 1)

(γ + 1)
2 ε

3 +O(ε4). (7.73)

Nous pouvons ainsi exprimer la différence d’entropie en fonction de l’intensité du choc Π′ = p2−p1
p1

s2 − s1 = cv
1

12

γ2 − 1

γ2
Π′3 +O(Π′4) (7.74)

Ainsi, pour Π′ ≪ 1, l’entropie est presque invariable et à la limite lorsque ε tend vers zéro, l’intensité du
choc tend aussi vers zéro. Nous obtenons alors une onde acoustique dont la vitesse de propagation est
donnée par la vitesse du son.

7.3.2 Relation de Rankine-Hugoniot
Dans le cas d’un gaz parfait, nous avons

h = cpT =
γ

γ − 1

p

ρ
, (7.75)

ce qui permet d’écrire (7.37) sous la forme

p2
p1

=
1 + ρ1

ρ2
− 2γ

γ−1

1− γ+1
γ−1

ρ1
ρ2

= f

(
ρ1
ρ2

)
, (7.76)
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que nous comparons avec la relation isentrope

p2
p1

=

(
ρ2
ρ1

)γ
= g

(
ρ1
ρ2

)
. (7.77)

La figure 7.5 représente une comparaison du rapport p2
p1

en fonction de ρ1
ρ2

entre les relations isentrope
et de Rankine-Hugoniot.

Figure 7.5 – Représentation des relations isentrope et d’Hugoniot

Par hypothèse, l’entropie est constante et égale à s1 en tout point de AC. D’autre part, tous les
points en-dessous de AC (ou au-dessus) ont une entropie supérieure (ou inférieure) à s1. En effet, l’état
du fluide en B est obtenu à partir de l’état en A en diminuant ρ à p constant. Or, nous avons

s = cv ln

(
p

ρ

)γ
+ s0, (7.78)

dont nous déduisons que l’entropie en B est supérieure à s1. Par ailleurs, seule la branche OB correspond
à des évolutions physiquement réalisables, puisque l’entropie variant au cours de son passage à travers le
choc doit nécessairement croître en vertu du second principe. Or, la branche OB correspond aux valeurs
positives de ln ρ2

ρ1
donc à des valeurs positives de ln p2

p1
. Par conséquent, la pression croît à travers le choc.

Une onde de choc droite est donc une onde de compression.

7.3.3 Relations entre les vitesses de part et d’autre du choc
Considérons maintenant la conservation de la quantité de mouvement (Equation 7.24) écrite sous la

forme
wn,2 − wn,1 =

p1
ρ1wn,1

− p2
ρ2wn,2

, (7.79)

puis la conservation de l’énergie (4.38) exprimée par la relation suivante, obtenue en introduisant la
condition sonique

p

ρw
=
γ + 1

2γ

a2∗
w
− γ − 1

2γ
w. (7.80)

Cette condition sonique existe obligatoirement de par la forme de l’équation de conservation d’énergie,
mais évidemment ne se produit pas physiquement à l’intérieur du choc.

Ainsi, par substitution de (7.80) dans (7.79), nous avons

wn,2 − wn,1 =
γ + 1

2γ
a2∗

(
1

wn,1
− 1

wn,2

)
+
γ − 1

2γ
(wn,2 − wn,1) , (7.81)

ce qui s’écrit aussi sous la forme

(wn,2 − wn,1)
[
1− γ − 1

2γ
− γ + 1

2γ

a2∗
wn,1wn,2

]
= 0, (7.82)

dont la solution wn,2 = wn,1 ne nous intéresse pas. Il reste ainsi[
1− γ − 1

2γ
− γ + 1

2γ

a2∗
wn,1wn,2

]
= 0, (7.83)
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dont nous déduisons
wn,1wn,2 = a2∗. (7.84)

Le produit des vitesses de part et d’autre du choc est égal au carré de la vitesse critique. Cette relation
est connue sous le nom de relation de Prandtl. Deux solutions semblent possibles. Cependant, l’évolution
à travers le choc n’est pas isentrope et par conséquent s2 > s1, et donc p2 > p1, soit ρ2 > ρ1. Ainsi, avec
la conservation de la masse (Equation 7.23)

wn,2
wn,1

=
ρ1
ρ2
, (7.85)

nous aboutissons à la condition
wn,1 > wn,2, (7.86)

qui exprime le fait que l’écoulement est toujours supersonique à l’amont d’un choc droit et subsonique à
l’aval.

7.3.4 Pression totale et col sonique de part et d’autre du choc
Une relation pratique que l’on peut obtenir à partir de la relation (5.47) est la suivante

p0A∗ = const. (7.87)

En effet, considérons les deux écoulements isentropes de chaque coté d’un choc droit dans une tuyère.
Nous savons que la température totale ne change pas, soit T0,1 = T0,2 = T0, où l’indice (1) correspont à
l’écoulement supersonique avant le choc et l’indice (2) à l’écoulement subsonique après le choc. En vertu
de la conservation de la masse, il est possible d’écrire pour un débit ṁ donné conservé à travers le choc
et d’après (5.47)

(ρ0a0A∗)1 = (ρ0a0A∗)2 , (7.88)

mais comme
ρ0a0 = ρ0

√
γrT0 =

p0
rT0

√
γrT0, (7.89)

nous avons l’égalité
p0,1
rT0

√
γrT0A∗,1 =

p0,2
rT0

√
γrT0A∗,2, (7.90)

et finalement, après simplification des termes constants

p0,1A∗,1 = p0,2A∗,2. (7.91)

Tout se passe pour l’écoulement subsonique, comme si l’on considère une autre tuyère de section au col
A∗,2, et de pression génératrice p0,2.



Chapitre 8

Ondes de choc obliques

Une onde de choc oblique est telle que la vitesse de l’écoulement en amont du choc n’est pas per-
pendiculaire au choc. L’étude de ces ondes est justifiée car l’expérience montre qu’elles se produisent
effectivement, soit à l’avant d’obstacles pointus placées dans un écoulement supersonique, soit lors d’une
variation brusque de la direction d’une paroi.

Figure 8.1 – Exemples d’ondes de choc oblique : ondes de choc bidimensionnelle sur le bord d’attaque
d’un dièdre ; onde de choc conique sur un corps axisymmétrique ; onde de choc courbe présentant à la
fois des parties droites et des parties obliques.

8.1 Equations de conservation pour les ondes de choc obliques

8.1.1 Volume de contrôle

Comme pour le cas des ondes de choc droites, un référentiel fixe par rapport à l’onde sera choisi
afin de faciliter le traitement. On choisit un volume de contrôle englobant le choc, comme illustré sur la
Figure 8.2 ci-dessous.

A l’amont du choc (région 1), l’écoulement est uniforme et, à l’aval dans la région 2, l’écoulement est
lui aussi uniforme mais les variables d’état sont différentes après la surface de discontinuité.

Les hypothèses concernant le volume de contrôle sont identiques à celle du choc droit (Chapitre 7).
La distinction par rapport au cas des ondes de choc droites apparaît au niveau des vecteurs vitesse

en amont et en aval du choc. En amont, le vecteur vitesse n’est pas perpendiculaire au choc (de par la
définition d’une onde de choc oblique). En particulier, il est possible de décomposer le vecteur vitesse
en une composante normale au choc, wn,1, et une composante tangentielle au choc, wt,1. En aval, la
direction du vecteur vitesse n’est pas à priori connue. Comme en amont, elle peut être décomposée en
une composante normale, wn,2, et une composante tangentielle, wnt,2, au choc.

La pression, la vitesse, la masse volumique, l’enthalpie et la température de la région 1 subissent la
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Figure 8.2 – Volume de contrôle pour une onde de choc oblique.

variation
p1 → p2,
wn,1 → wn,2,
wt,1 → wt,2,
ρ1 → ρ2,
h1 → h2,
T1 → T2,

(8.1)

entre les régions 1 et 2. Dès lors, le problème du choc oblique est exactement celui du choc droit et
peut s’énoncer de la manière suivante. Etant données les grandeurs p1, wn,1, wt,1, ρ1, h1, T1 connues
à l’amont, déterminer les grandeurs p2, wn,2, wt,2, ρ2, h2, T2 à l’aval du choc. Pour la résolution de ce
problème, nous utilisons les équations de conservation ainsi que les équations constitutives.

8.1.2 Conservation de la masse

On utilise l’équation de conservation de la masse sous la forme (Equation 3.1)

∂

∂t

∫
V

ρdV +

∫
S

ρu · ndS = 0. (8.2)

En se plaçant dans un référentiel coïncidant avec le choc, le vecteur vitesse devient u = w. Le premier
terme contenant la dérivée temporelle peut être négligé selon les critères énoncés précédemment. De
même, toute intégration sur les “bords” est également négligeable. Ainsi, on se retrouve avec la relation∫

S1,S2

ρw · ndS = 0, (8.3)

laquelle devient

−
∫
S1

ρwndS +

∫
S2

ρwndS = 0, (8.4)

où wn est la composante de w perpendiculaire au choc, wn = w · n. Comme les faces sont prises assez
petites pour que les propriétés soient uniformes de part et d’autre du choc le long de ces faces, et que les
deux surfaces S1 et S2 ont la même aire (du fait qu’elles soient très proches l’une de l’autre), on a alors

ρ1wn,1 = ρ2wn,2. (8.5)

Cette relation est identique à celle trouvée pour une onde de choc droite.
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8.1.3 Conservation de la quantité de mouvement
D’une manière similaire, on utilise l’équation de conservation de quantité de mouvement sous forme

intégrale (Equation 3.4)

∂

∂t

∫
V

ρu dV +

∫
S

ρu (u · n) dS = −
∫
S

pndS +

∫
S

T · ndS +

∫
V

ρf dV, (8.6)

où T représente le tenseur des contraintes visqueuses et f le vecteur des forces volumiques. L’intégration
sur le volume de la quantité de mouvement (celle faisant intervenir une dérivée par rapport au temps)
peut être négligée du fait d’un volume choisi comme infiniment petit (il ne peut pas y avoir de stockage
de quantité de mouvement). Par le même argument, l’intégrale volumique des forces de volume (gravité)
est négligeable pour un volume infiniment petit. Comme les faces S1 et S2 sont choisies hors du choc,
les contraintes visqueuses y sont négligeables (par hypothèse, l’écoulement est isentropique de part et
d’autre du choc). Le choix d’un volume de contrôle très fin permet d’éliminer les termes faisant intervenir
des intégrations sur les bords (Sb), ce qui est commode car les contraintes visqueuses y sont conséquentes
et non connues. Ainsi ∫

S1,S2

ρw (w · n) dS = −
∫
S1,S2

pndS. (8.7)

Cette relation est vectorielle. La projection selon la normale n au choc produit alors

−ρ1wn,1wn,1 + ρ2wn,2wn,2 = p1 − p2, (8.8)

ou
p1 + ρ1w

2
n,1 = p2 + ρ2w

2
n,2, (8.9)

qui, encore une fois, est identique à celle d’un choc droit.
La projection selon la tangente au choc conduit à

−ρ1wt,1(wn,1) + ρ2wt,2(wn,2) = 0, (8.10)

qui peut être réécrite sous la forme

−wt,1(ρ1wn,1) + wt,2(ρ2wn,2) = 0. (8.11)

La conservation de masse, ρ1wn,1 = ρ2wn,2, dicte alors que

wt,1 = wt,2. (8.12)

La composante de la vitesse tangentielle au choc est donc invariante.

8.1.4 Conservation de l’énergie
Soit l’équation de conservation d’énergie

∂

∂t

∫
V

ρe0 dV +

∫
S

(ρe0u) ·n dS = −
∫
S

pu ·n dS+
∫
S

(T · u) ·n dS+
∫
V

ρ (f · u) dV −
∫
S

q ·n dS+
∫
V

r dV,

(8.13)
où

e0 = e+
1

2
u2. (8.14)

Avec les mêmes hypothèses que pour le cas du choc droit, on obtient∫
S1,S2

(ρe0u) · n dS = −
∫
S1,S2

pu · n dS, (8.15)

qui peut se réécrire dans le repère du choc (pour des surface S1 et S2 égales)

ρ2

(
e2 +

w2
n,2 + w2

t,2

2

)
wn,2 − ρ1

(
e1 +

w2
n,1 + w2

t,1

2

)
wn,1 = −p2wn,2 + p1wn,1. (8.16)
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En introduisant l’enthalpie h = e+ p/ρ

ρ1

(
h1 +

w2
n,1 + w2

t,1

2

)
wn,1 = ρ2

(
h2 +

w2
n,2 + w2

t,2

2

)
wn,2, (8.17)

et en invoquant la conservation de masse, on obtient alors

h1 +
w2
n,1 + w2

t,1

2
= h2 +

w2
n,2 + w2

t,2

2
. (8.18)

Comme la composante de la vitesse tangentielle au choc est invariante, l’équation de conservation d’éner-
gie peut s’écrire sous les deux formes équivalentes[

h+
w2

2

]
= 0, (8.19)

[
h+

w2
n

2

]
= 0. (8.20)

8.1.5 Entropie
Comme pour le cas du choc droit, le deuxième principe de la thermodynamique appliqué au volume

de contrôle impose la condition
[s] > 0. (8.21)

8.2 Géométrie
Les ondes de chocs droites et obliques diffèrent de par la géométrie de l’écoulement. L’onde décrit un

angle θ par rapport à l’écoulement en amont. L’écoulement en aval est dévié d’un angle δ par rapport à
l’écoulement en amont. Ainsi

Figure 8.3 – Définition des angles pour le cas d’une onde de choc oblique.

Alors que pour un choc droit le nombre de Mach de l’écoulement était identique au nombre de Mach
normal, il n’en est pas ainsi pour les ondes de choc obliques. En particulier, de simples considérations
géométriques conduisent aux résultats suivants

Choc droit Choc oblique

Mn,1 =M1 Mn,1 =M1 sin θ
Mn,2 =M2 Mn,2 =M2 sin(θ − δ)

(8.22)

8.2.1 Interprétation Galiléenne des ondes de chocs obliques
Soit une onde de choc normale, stationnaire par rapport à un observateur, comme indiqué sur le

schéma ci-dessous. Si l’observateur est mis en mouvement et se déplace maintenant le long du choc avec
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une vitesse −wt, l’écoulement dans le nouveau repère de l’observateur a alors la configuration du schéma
de droite. La géométrie de l’écoulement dans ce nouveau référentiel est celui d’une onde de choc oblique
(une simple rotation du schéma redonne la Figure 8.3). Ceci est le cas car les composantes tangentielles de
la vitesse de part et d’autre du choc sont identiques (ce qui nous a permis de choisir un référentiel mobile).
Comme les propriétés thermodynamiques sont indépendantes du référentiel, ces simples considérations
conduisent au résultat que les ondes de chocs obliques doivent satisfaire les mêmes relations que les ondes
de chocs droites.

Figure 8.4 – Observateur stationnaire par rapport à une onde de choc normale, et observateur en
mouvement le long de la même onde de choc.

8.3 Relations entre variables thermodynamiques de part et d’autre
du choc oblique

8.3.1 Equivalence avec les ondes de choc droites

Les chocs droits et obliques répondent exactement aux mêmes équations de conservation et consti-
tutives. De plus, comme seule la composante normale intervient, les relations liant les variables d’état à
l’amont et à l’aval du choc sont identiques pour les deux problèmes du choc droit et du choc oblique. Il
est donc inutile de les réécrire. Il suffit d’utiliser les résultats du Chapitre 7, en s’assurant d’utiliser le
nombre de Mach normal, Mn,1 =M1 sin θ.

8.3.2 Condition d’existence

Alors que dans le cas des ondes de chocs droites, l’existence du choc demandait que l’écoulement
en amont soit supersonique, cette condition n’est plus suffisante pour les ondes de chocs obliques. La
condition d’existence du choc impose que le nombre de Mach normal, Mn,1, soit supérieur à 1. Ainsi,
l’existence d’une onde de choc oblique demande que

M1 sin θ ≥ 1. (8.23)

8.3.3 Relations thermodynamiques pour un gaz parfait

En reprenant les relations écrites pour une onde de choc normale en fonction de Mn,1 (Equations
7.60 à 7.62), et en insérant l’expression Mn,1 =M1 sin θ, nous obtenons les résultats suivants en fonction
du nombre de Mach absolu M1 et de l’angle de l’onde de choc θ

p2
p1

=
2

γ + 1

(
γM2

1 sin2 θ − γ − 1

2

)
= 1 +

2γ

γ + 1

(
M2

1 sin2 θ − 1
)
, (8.24)

ρ2
ρ1

=
wn,1
wn,2

=
γ + 1

2

M2
1 sin2 θ

1 +
γ − 1

2
M2

1 sin2 θ
, (8.25)
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T2
T1

=
p2
p1

ρ1
ρ2

=

(
2

γ + 1

)2
1

M2
1 sin2 θ

(
1 +

γ − 1

2
M2

1 sin2 θ

)(
γM2

1 sin2 θ − γ − 1

2

)
, (8.26)

puis, de la même manière avec (7.59) et (7.68)

s2 − s1 = cv ln

{[
1 +

2γ

γ + 1

(
M2

1 sin2 θ − 1
)] [

1− 2

γ + 1

M2
1 sin2 θ − 1

M2
1 sin2 θ

]γ}
, (8.27)

M2
2 =

1

sin2(θ − δ)

1 +
γ − 1

2
M2

1 sin2 θ

γM2
1 sin2 θ − γ − 1

2

. (8.28)

8.3.4 Géométrie
Si le nombre de Mach M1 et l’angle de l’onde de choc θ sont connus, la procédure suivante serait

utilisée pour résoudre le problème. En effet, les nombres de Mach normal et tangent au choc peuvent
être évalués à partir de

Mn,1 =M1 sin θ, (8.29)

Mt,1 =M1 cos θ. (8.30)

La valeur de Mn,1 et les relations des ondes de choc droites (Chapitre 7) peuvent alors être utilisées
pour la détermination de Mn,2 et des valeurs thermodynamiques en aval du choc (en supposant que les
valeurs en amont sont connues). Comme la composante tangentielle du vecteur vitesse est invariante de
part et d’autre du choc, il est possible d’écrire

wt,1 = wt,2, (8.31)

ce qui peut s’exprimer
Mt,1

√
γrT1 =Mt,2

√
γrT2, (8.32)

permettant d’obtenir

Mt,2 =Mt,1

√
T1
T2
. (8.33)

L’évaluation de M2 à partir de
M2

2 =M2
n,2 +M2

t,2 (8.34)

permet alors d’obtenir l’angle de déviation de l’écoulement δ selon la relation suivante

sin(θ − δ) = Mn,2

M2
. (8.35)

La relation (8.28) fait intervenir l’angle de déviation de l’écoulement δ, angle entre w1 et w2, pour
le calcul du nombre de Mach M2. D’après la géométrie du problème,

tan θ =
wn,1
wt,1

et tan (θ − δ) = wn,2
wt,2

, (8.36)

et nous avons immédiatement en vertu de (8.25) et de la propriété wt,1 = wt,2

tan (θ − δ)
tan θ

=
wn,2
wn,1

=
ρ1
ρ2

=
2 + (γ − 1)M2

1 sin2 θ

(γ + 1)M2
1 sin2 θ

, (8.37)

qui est une relation implicite de δ, θ et M1. En réarrangeant les termes, il est possible de faire apparaître
la relation explicite de δ en fonction de M1 et θ

tan δ = 2 cot θ
M2

1 sin2 θ − 1

M2
1 (γ + cos 2θ) + 2

. (8.38)

Si M1 et θ sont connus, cette relation permet d’obtenir δ directement (solution unique). Dans une
autre catégorie de problèmes (écoulements autour de profils aérodynamiques), l’angle δ est connu et il
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Figure 8.5 – Variation de l’angle du choc en fonction de la déflection de l’écoulement, pour l’air (γ = 1.4).

s’agit de trouver θ à partir de la relation 8.38. La Figure 8.5 est une représentation de la variation de θ
en fonction de δ .

Ce diagramme a été tracé pour différentes valeurs du paramètre M1. Plusieurs remarques s’imposent.
* Pour un nombre de mach M1 donné, il existe deux solutions de θ pour chaque valeur de δ, pour

autant que δ soit inférieur à une valeur maximum δmax. Ces deux solutions sont dénotées solution faible
ou solution forte selon que la valeur de θ est petite ou grande. D’une manière générale, la solution faible
est la plus commune. Nous verrons plus loin dans quels cas on rencontre la solution forte. Parfois, on
dénote ces solutions comme correspondant à un choc faible ou un choc fort. La solution faible donne
effectivement lieu à une différence de pression plus faible de part et d’autre du choc par rapport à la
solution forte, et donc la solution faible fournit un choc plus faible que la solution forte. Cependant, bien
que les deux solutions correspondent à deux chocs d’intensité différente, il n’est pas vrai que l’on aura
un choc fort (ou faible) de manière absolue pour la solution forte (ou faible). Par exemple, si l’on prend
la courbe pour M1 = 1.1, il existe bien deux solutions, une où le choc est plus fort que l’autre, mais dans
les deux cas, le choc est de petite intensité de par la valeur du nombre de Mach proche de 1.

* Quand δ tend vers zéro, il existe deux solutions pour θ, une proche de 90 degrés (choc droit) et une
deuxième correspondant à la solution faible. Nous allons montrer que cette solution correspond à une
onde de Mach. Une onde de Mach est caractérisée par le fait que l’écoulement est isentropique et n’est
pas dévié de sa trajectoire. De ce fait, une onde de Mach est telle que δ → 0. A partir de l’expression
(8.38)

tan δ = 2 cot θ
M2

1 sin2 θ − 1

M2
1 (γ + cos 2θ) + 2

, (8.39)

lorsque δ tend vers zéro, tan δ tend aussi vers zéro et, par conséquent, le numérateur de (8.39) doit suivre
le même comportement. Nous en déduisons que

lim
δ→0

tan δ = 0 → M2
1 sin2 θ − 1 = 0, (8.40)

ce qui fournit l’angle d’une onde de Mach

lim
δ→0

θ = µ = arcsin

(
1

M1

)
. (8.41)
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* Il existe une valeur maximale de δ pour une valeur de M1 donnée. Au delà de cette valeur maximale,
il ne semble plus y avoir de solution pour θ. Cette situation correspond à une rampe ou un dièdre
d’ouverture trop grande. Il ne peut exister d’onde de choc oblique. Le choc se détache alors et on n’a
plus une onde de choc oblique attachée mais une onde de choc détachée, qui sera généralement droite
près de l’axe de symétrie et courbe plus loin, et située légèrement en amont de la rampe ou du dièdre.
D’une manière équivalente, le nombre de Mach doit avoir une valeur minimale pour qu’il puisse exister
une onde de choc oblique pour une valeur δ donnée, sinon le choc sera détaché.

* Plus le nombre de Mach M1 augmente, plus il est facile d’avoir une onde de choc oblique attachée
(δmax augmente). Pour une valeur constante de δ, l’angle de l’onde de choc oblique (pour la solution
faible) diminue (pour le cas de la solution forte, cet angle augmenterait).

* Le nombre de Mach en aval du choc peut être soit inférieur soit supérieur à 1. La solution forte
génère toujours un écoulement subsonique en aval du choc. Il n’en est pas ainsi pour la solution faible.
Le diagramme 8.5 montre la ligne de démarcation M2 = 1. Bien que cette ligne soit proche de la ligne
séparant la solution faible de la solution forte (δ = δmax), elle ne coïncide pas avec cette dernière. Il peut
exister des solutions faibles avec un écoulement subsonique en aval.

* Il existe une valeur de δ maximale au delà de laquelle une onde choc oblique n’est pas possible,
quelle que soit la valeur du nombre de Mach. Pour l’air, cet angle est légèrement supérieur à 45 degrés.

8.4 Phénomènes associés aux chocs

8.4.1 Choc attaché et choc détaché

Pour un nombre de Mach donné M1, nous avons vu qu’il existe un angle de déviation maximum δmax.
Si la géométrie est telle que δ < δmax, on voit apparaître un choc oblique rectiligne et attaché au coin
du dièdre ou au nez de l’objet pointu. Cependant dans ce cas, il existe deux solutions de choc oblique
rectiligne (Fig. 8.6). En écoulement externe, la solution faible est généralement la plus commune. En
écoulement confiné ou avec des conditions ou des géométries en aval conduisant à des interférences, il est
possible, mais rare, d’obtenir la solution forte.

Figure 8.6 – Chocs attaché et détaché

Inversement si δ > δmax, aucune solution n’existe pour une onde de choc oblique rectiligne. La nature
met cependant en place une onde de choc courbe et détaché du nez du corps pointu ou du dièdre (Fig.
8.6). Elle est normale sur l’axe et s’incline de plus en plus au fur et à mesure que l’on s’éloigne de l’axe.
A longue distance, elle a la même inclinaison que les ondes de Mach. Comme la courbure de l’onde de
choc change, on peut montrer à l’aide de la formulation de Crocco (Chapitre 3) que derrière le choc
l’écoulement est rotationnel (présence de vorticité).
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8.4.2 Ecoulement supersonique autour de dièdres

L’écoulement supersonique bidimensionnel autour d’un dièdre d’ouverture 2δ est caractérisé par une
onde de choc oblique rectiligne attachée au sommet du dièdre à condition que δ < δmax. L’écoulement
uniforme à l’amont et parallèle à l’axe de symétrie du dièdre (par exemple) est aussi uniforme après le
choc et est parallèle à la surface du dièdre (Fig. 8.7). La pression à la surface du dièdre est égale à la
pression statique p2 derrière le choc.

Figure 8.7 – Chocs sur un dièdre

Lorsque δ > δmax, la distance entre le choc et le nez du dièdre dépend du nombre de Mach aval et de
la valeur de δ. Dans la zone proche de l’axe le choc se comporte comme un choc droit et, derrière le choc,
l’écoulement est subsonique. Il redevient supersonique en s’éloignant vers l’aval. On aura évidemment un
ligne sonique qui apparaîtra lors de l’accélération du fluide.

8.4.3 Réflexion et interaction des chocs

Reflexion d’une onde de choc oblique sur une paroi. Considérons un écoulement supersonique
M1. Examinons ce qui se passe lorsqu’une onde de choc oblique I rencontre une paroi plane parallèle à
l’écoulement (Fig. 8.8). Appelons P le point de rencontre de l’onde I et de la paroi. Après son passage
à travers I, l’écoulement est dévié vers la paroi d’un angle δ. La vitesse de la particule en P devant
être nécessairement parallèle à la paroi, nous arrivons à une absurdité, à moins d’imaginer une onde de
choc oblique R issue de P qui redresse l’écoulement M2 en le déviant d’un angle −δ. Dans ce cas la
vitesse des particules passant par P reste parallèle à la paroi et l’écoulement à nombre de Mach M3 est
un écoulement uniforme de même direction que celui en amont de I. L’onde de choc oblique R est une
reflexion sur la paroi de l’onde de choc incidente I.

Cette réflexion n’est pas toujours possible. Il faut non seulement que le nombre de Mach M2 soit
supérieur à l’unité, mais encore que M2 soit suffisamment grand pour que la déviation imposée soit
inférieure à la déviation maximum δmax réalisable avec une onde de choc oblique. Lorsque δ est supérieur
à δmax correspondant à M1, l’expérience montre que la réflexion de l’onde incidente se produit en un
point de l’écoulement situé à une certaine distance de la paroi avec formation d’une troisième onde de
choc, du type fort et quasi-normale à la paroi (appelée choc de Mach). L’onde R est telle que la pression
en aval de R est égale à la pression en aval du choc de Mach. L’entropie derrière le choc de Mach et
en aval des deux chocs obliques est a fortiori différente. Par suite, il existe une ligne où on a un saut
d’entropie à pression constante et où la direction de la vitesse est la même : c’est une ligne ou surface de
contact.

Interaction de deux ondes de choc de même intensité. Considérons deux ondes de choc oblique
I1 et I2 créées en deux points quelconques d’un écoulement supersonique et analysons ce qui se passe
à leur point de rencontre (Fig. 8.10). On supposera que les deux ondes ont la même intensité. Le plan
passant par le point d’intersection est parallèle à l’écoulement amont (symétrie). Pour l’écoulement, tout
se passe comme si le choc (par exemple I1) rencontrait une paroi qui serait ce plan. Il se produit alors
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Figure 8.8 – Réflexion d’ondes de chocs

Figure 8.9 – Réflexion avec choc de Mach
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une onde réfléchie R1 (et R2). L’interaction des deux chocs, se caractérise alors par un changement de
leur inclinaison en leur point de rencontre : on a donc une réfraction. Dans ce cas, M2 =M3 et M4 =M5.

Figure 8.10 – Interaction de deux ondes de choc de même intensité

Interaction de deux ondes de choc d’intensité différentes. Considérons un écoulement super-
sonique M1 entre deux plaques parallèles (Fig. 8.11). Chacune des plaques a un changement brusque
de direction, d’où se propagent des ondes de chocs obliques I1 et I2. Au point d’intersection des deux
chocs, l’onde I1 issue est réfractée et continue en I1′ . De même l’onde I2 est réfractée et continue à se
propager selon I2′ . L’interaction des deux ondes de choc oblique se caractérise donc par une variation de
leur inclinaison en leur point de rencontre.

Figure 8.11 – Interaction de deux ondes de choc d’intensité différentes

Les intensités des chocs I2 et I1 étant en général différentes, l’entropie derrière les deux chocs est aussi
différente. Par suite, il existe une ligne où on a un saut d’entropie à pression constante et où la direction
de la vitesse est la même : c’est une ligne ou surface de contact. De même que pour la réflexion simple
d’une onde de choc sur une paroi, il existe une valeur limite δmax = δmax(M1). Dans le cas où la déviation
δ est supérieure à cette limite, l’expérience montre qu’il se produit une interaction plus complexe faisant
intervenir une onde de choc normale à la place du point simple d’intersection des deux ondes de choc
obliques.

Choc oblique en sortie de tuyère. Dans certaines conditions d’opération, la pression de sortie est
inférieure à la pression arrière, et une onde de choc oblique doit se former afin de comprimer l’écoulement
en sortie (Figure 8.12). La surface de contact entre l’écoulement de la tuyère et le fluide ambiant est alors
dirigée vers l’intérieur et son angle est celui de la déviation de l’écoulement de sortie suite à sa traversée
de l’onde de choc oblique. Il y a donc rétrécissement du jet.

Neutralisation d’une onde de choc. Il peut être intéressant dans la pratique de neutraliser (Fig.
8.13) une onde de choc lors d’une réflexion. Considérons l’onde de choc oblique incidente (générée en
amont par un dièdre ou une rampe). Cette onde détourne l’écoulement d’un angle δ vers l’onde, et
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Figure 8.12 – Choc oblique en sortie de tuyère

augmente la pression statique du fluide. A l’intersection de l’onde et de la paroi, la condition physique
impose que l’écoulement soit parallèle à la paroi. Si la paroi est tournée du même angle δ, alors cette
condition physique est vérifiée et il n’y a pas d’onde réfléchie. Par suite, il suffit de faire tourner la paroi
de l’angle δ pour neutraliser l’onde de choc oblique.

Figure 8.13 – Neutralisation d’une onde de choc



Chapitre 9

Ecoulement de Prandtl-Meyer

Jusqu’à présent, nous avons été dans le contexte d’ondes de choc de compression. Cependant, dans un
écoulement bi-dimensionnel, une détente (baisse de pression) peut être nécessaire. On a observé que dans
le cas monodimensionnel, une détente se faisait naturellement dans une tuyère de géométrie adapté au
nombre de Mach. Cette détente était d’ailleurs isentropique. Dans ce Chapitre, nous allons développer la
machinerie qui permet de détendre un écoulement en plus d’une dimension : c’est ce que nous dénomme-
rons les écoulements de Prandtl-Meyer, qui seront également isentropiques. Ainsi, tous les résultats sur
les écoulements isentropiques s’appliqueront dans le Chapitre présent. Une démonstration expérimentale
des ces écoulements de Prandtl-Meyer apparaît sur la photo ci-dessous, où, en plus des ondes de choc,
sont présentes des régions que l’on démontrera comme étant des ondes de détentes isentropiques.

Figure 9.1 – Ondes de détente

9.1 Ondes de chocs obliques d’intensité infinitésimale
Dans le diagramme du Chapitre précédent, nous allons nous placer dans le cas où l’onde de choc est

d’intensité infinitésimale, c’est à dire proche du cas d’une onde de Mach pour laquelle la déviation de
l’écoulement est infinitésimale δ → 0 et son angle est θ → µ = sin−1(1/M1). Bien que pour les ondes de
chocs de compression nous avons été forcé de ne considérer que les cas δ > 0 afin de respecter le second
principe de la Thermodynamique s2 > s1, nous allons voir que pour des chocs d’intensité infinitésimale
des angles de déviation δ < 0 sont autorisés.

A partir de la géométrie d’une onde de choc

tan θ =
wn,1
wt,1

et tan (θ − δ) = wn,2
wt,2

, et wt = wt,1 = wt,2, (9.1)

on obtient, avec un peu de manipulation de relations trigonométriques,

− [wn]

wt
=

tan δ

cos2 θ(1 + tan θ tan δ)
, (9.2)

qui devient, en utilisant la relation wt/a1 =M1 cos θ,

− [wn]

a1
=

M1 tan δ

cos θ + sin θ tan δ
. (9.3)
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Avec Mn,1 =M1 sin θ et la relation 7.30 que nous rappelons

Π =
[p]

ρ1a21
= −Mn,1

[wn]

a1
, (9.4)

on obtient ainsi une relation générale entre la différence de pression de part et d’autre d’un choc (pour
un fluide arbitraire, non nécessairement un gaz parfait), sa géométrie, et le nombre de Mach en amont

Π

M2
1

=
tan δ

cot θ + tan δ
. (9.5)

Pour des ondes de chocs obliques d’intensité infinitésimale, on a θ → µ et δ → ∆δ, ce qui conduit à

lim
δ→∆δ

Π

M2
1

=
∆δ

cotµ
=

∆δ√
M2

1 − 1
, (9.6)

où l’on a utilisé les relations pour des ondes de Mach (sinµ = 1/M1, cosµ =
√
M2

1 − 1/M1, cotµ =√
M2

1 − 1). Or, dans le Chapitre sur les ondes de chocs droites, le saut en entropie pour des ondes de
chocs faibles a été évalué pour des fluides quelconques

T1 [s]

a21
=

1

6
Γ1Π

3 +O
(
Π4
)
, (9.7)

ce qui mène à la relation suivante

lim
δ→∆δ

T1 [s]

a21
=

Γ1

6

M6
1

(M2
1 − 1)3/2

(∆δ)3. (9.8)

Nous allons montrer que cette relation permet de dévier l’écoulement d’une manière isentropique sur
un angle arbitraire, positif (compression) ou négatif (détente). Si l’on considère un grand nombre n de
rampes, chacune déviant l’écoulement d’un petit angle ∆δ = δ/n, l’écoulement pourra ainsi être dévié
au final d’un angle fini n∆δ = n(δ/n) = δ.

Figure 9.2 – Compression à travers une succession d’ondes de chocs obliques d’intensité infinitésimale

Pour chacune des rampes infinitésimales, le saut en entropie à travers chaque onde infinitésimale est

[s]i = ki(∆δ)
3 = ki

(
δ

n

)3

, (9.9)

où le coefficient ki dépend du nombre de Mach local selon la relation 9.8. Au bout des n rampes

[s] =

n∑
i=1

[s]i =

n∑
i=1

ki

(
δ

n

)3

=
δ3

n2

(
1

n

n∑
i=1

ki

)
=
δ3

n2
k̄, (9.10)

où k̄ est une moyenne (finie) du coefficient sur les n rampes. Comme δ et k̄ sont finis, il en résulte

lim
n→∞

[s] = δ3k̄ lim
n→∞

1

n2
= 0. (9.11)
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Ainsi, avec une succession d’ondes de chocs obliques infinitésimales, il est possible de dévier un écoulement
de manière isentropique. De plus, comme à chaque rampe [p]i ∼ ∆δ (Equation 9.6), le saut en pression
à la suite de plusieurs rampes sera proportionnelle à l’angle de déviation final

[p] =

n∑
i=1

[p]i =

n∑
i=1

Ki∆δ =

n∑
i=1

Ki

(
δ

n

)
= n

(
δ

n

)(
1

n

n∑
i=1

Ki

)
= δ · K̄. (9.12)

Il est donc possible de comprimer ou de détendre (car δ peut être négatif) l’écoulement de manière
isentropique par une succession d’ondes de chocs obliques d’intensité infinitésimales (ondes de Mach).

Figure 9.3 – Détente et compression isentropiques

9.2 Compression et détente isentropes

9.2.1 Variation infinitésimale à travers une ligne de Mach
Soit ∆w la variation infinitésimale de la vitesse à travers un choc infiniment faible et ∆δ la déviation

de l’écoulement.

Figure 9.4 – Changement cinématique à travers un choc faible

La déviation infinitésimale ∆δ positive correspond à une compression isentrope et la déviation infi-
nitésimale négative correspond à une détente isentrope. Nous avons

wt,1
w1

= cos θ,
wt,2
w2

= cos(θ −∆δ), (9.13)

et puisque θ → µ
wt,1
w

= cosµ,
wt,2

w +∆w
= cos(µ−∆δ), (9.14)

ce qui donne avec wt,1 = wt,2
w

w +∆w
=
cos(µ−∆δ)

cosµ
. (9.15)
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Avec cos (µ−∆δ) = cosµ cos∆δ + sinµ sin∆δ, et en tenant compte du fait que ∆δ est petit, nous
pouvons écrire cos∆δ ≃ 1 et sin∆δ ≃ ∆δ, ce qui nous permet d’aboutir à l’expression

cos(µ−∆δ)

cosµ
≃ 1 + tanµ ·∆δ. (9.16)

A partir des relations pour des ondes de Mach (tanµ = 1/
√
M2

1 − 1), on a alors

cos(µ−∆δ)

cosµ
≃ 1 +

∆δ√
M2

1 − 1
. (9.17)

Ensuite, avec un développement en série de Taylor au premier ordre

w

w +∆w
=

1

1 +
∆w

w

≃ 1− ∆w

w
, (9.18)

nous obtenons la relation finale
1− ∆w

w
= 1 +

∆δ√
M2

1 − 1
, (9.19)

puis de manière équivalente
∆w

w
= − ∆δ√

M2 − 1
, (9.20)

ce qui donne

∆δ = −
√
M2 − 1

∆w

w
. (9.21)

ou, en convertissant sous une forme différentielle

dδ = −
√
M2 − 1

dw

w
. (9.22)

Cette relation donne la déviation à travers un choc oblique d’intensité infiniment faible. Elle gouverne
alors les écoulements autour de parois courbes avec des changements de pente positif ou négatif. Elle est
aussi valable pour les écoulements bidimensionnels supersoniques loin des parois.

9.2.2 Relations de Prandtl-Meyer
Dans le Chapitre sur les écoulements isentropiques, une relation entre dw/w et la variation du nombre

de Mach dM/M a été obtenue (Equation 4.23)

dw

w
=

dM/M

1 + (Γ− 1)M2
, (9.23)

où Γ est la dérivée fondamentale (égale à (γ + 1)/2 pour un gaz parfait). Ainsi

dδ = −
√
M2 − 1

1 + (Γ− 1)M2

dM

M
. (9.24)

Cette relation, valable pour un fluide quelconque, peut être intégrée exactement si Γ est constante. Nous
allons nous concentrer sur le cas du gaz parfait pour lequel les relations qui suivent ont été obtenues par
Prandtl et Meyer. Ainsi

dδ = −
√
M2 − 1

1 +
γ − 1

2
M2

dM

M
. (9.25)

On définit alors l’angle ν(M), connu sous le nom de fonction de Prandtl-Meyer, comme

ν(M) ≡
∫ M

1

√
M2 − 1

1 + γ−1
2 M2

dM

M
. (9.26)
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Figure 9.5 – Fonction de Prandtl-Meyer

L’intégrale peut être effectuée analytiquement :

ν(M) =

√
γ + 1

γ − 1
arctan

√
γ − 1

γ + 1
(M2 − 1)− arctan

√
M2 − 1, (9.27)

dont une représentation est donnée à la figure 9.5 (en degrés).
La fonction de Prandtl-Meyer ν(M) représente physiquement l’angle de déviation que doit subir un

écoulement afin d’être détendu d’un nombre de Mach initial M = 1 à un nombre de Mach M . Cette
fonction est utile pour résoudre les problèmes de compression et détente isentropes. De par sa définition,
cette fonction est évidemment liée à l’angle de déviation de l’écoulement (et pas uniquement pour des
détentes).

Supposons par exemple que nous ayons un nombre de Mach incident M1 et l’angle des lignes de
courant est δ1 (par rapport à un axe arbitraire). Pour déterminer M2 lors d’une déviation δ2 − δ1, nous
écrivons

δ =

∫ δ2

δ1

dδ = −
∫ M2

M1

√
M2 − 1

1 + γ−1
2 M2

dM

M
= −

∫ M2

1

(. . .) +

∫ M1

1

(. . .) = −ν(M2) + ν(M1). (9.28)

Finalement, on obtient la relation simple pour une déviation d’écoulement δ

ν(M2) = ν(M1)− δ. (9.29)

Par simple inversion de la fonction de Prandtl-Meyer (qui est monotone), il est alors possible d’évaluer
M2. De par la construction de la théorie, on prendra toujours :

* δ > 0 pour une compression,
* δ < 0 pour une détente.

9.3 Ondes de détente
Un exemple de faisceau continu autour d’un changement continu de courbure d’une paroi est illustré

sur la figure 9.6.
A l’amont de la déviation, l’écoulement est caractérisé par le nombre Mach M1 et l’angle de Mach µ1.

Une ligne de courant quelconque, qui à l’amont est parallèle à la paroi, dévie graduellement pour, à la
fin de l’expansion, être parallèle à la paroi aval avec un nombre de Mach M2 et l’angle de Mach associé
µ2. Ceci signifie que la première onde de Mach limitant l’expansion (coté amont) est inclinée de l’angle
µ1 par rapport à la paroi amont, tandis que la dernière est inclinée de l’angle µ2 par rapport à la paroi
aval.

Entre les deux lignes de Mach limites, un faisceau de lignes de Mach forme l’expansion dite de
Prandtl-Meyer. Les propriétés en aval de la détente se calculent simplement en écrivant la relation de
Prandtl-Meyer pour une déviation négative, δ < 0. Nous avons ainsi

ν(M2) = ν(M1)− δ. (9.30)
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Figure 9.6 – Détente isentrope avec courbure progressive et changement brusque.

Toutes les autres grandeurs se calculent avec les relations isentropes.
La même analyse peut être menée avec un changement brusque de direction d’angle ∆δ en présence

d’un dièdre convexe (Fig. 9.6).

9.3.1 Ondes de compression
Une onde de compression isentrope peut être engendrée par une paroi courbée. Dans certains cas, les

lignes de Mach peuvent converger au sein de l’écoulement et une onde de choc oblique peut apparaître
(Figure 9.7). En connaissant le nombre de Mach M1, il est possible de calculer l’angle de Mach µ1 et la
fonction de Prandtl-Meyer ν(M1).

Figure 9.7 – Compression isentropique, avec formation de choc par coalescence d’ondes de Mach

Ensuite, comme l’angle total de la déviation δ est connu (et positif), il est possible, à partir de la
relation de Prandtl-Meyer pour une compression, d’en déduire la valeur de ν(M2) et par suite de M2 et
enfin de l’angle µ2. Toutes les autres grandeurs se calculent avec les relations isentropes.



Chapitre 10

Méthode des caractéristiques

On étudie dans ce chapitre les écoulements supersoniques, bidimensionnels, stationnaires, irrotation-
nels, et isentropes de fluides non visqueux.

10.1 Equations de conservation

10.1.1 Forme générale

Commençons par un rappel des équations de conservation générales du Chapitre 3 exprimées en
tenant compte des hypothèses que nous avons admises dans ce chapitre.

Conservation de la masse

Pour un écoulement stationnaire (permanent), l’équation de conservation de masse est donnée par

∇ · (ρu) = 0. (10.1)

Conservation de la quantité de mouvement

Pour un fluide non visqueux, l’équation de conservation de la quantité de mouvement est donnée par

Du

Dt
= −1

ρ
∇p. (10.2)

En admettant un problème stationnaire, ceci peut s’écrire sous la forme de Lamb

∇
(
u2

2

)
− u ∧ ω = −1

ρ
∇p, (10.3)

où le vecteur tourbillon (vorticité) ω est défini comme

ω = ∇∧ u. (10.4)

En utilisant la relation de Gibbs, l’équation de conservation de quantité de mouvement peut alors se
mettre sous la forme de Crocco (Chapitre 3)

∇h0 = u ∧ ω + T∇s. (10.5)

Conservation de l’énergie

Pour un écoulement permanent et adiabatique d’un fluide non visqueux, on a montré au Chapitre 3
que l’équation de conservation d’énergie prend la forme

u · ∇h0 = 0, (10.6)

u · ∇s = 0. (10.7)

Ces deux relations expriment le fait que l’enthalpie totale et l’entropie reste invariants le long de lignes
de courants.
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10.2 Ecoulements irrotationnels

En absence d’ondes de chocs, les chapitres précédents ont été consacrés à des écoulements isentropes,
pour lesquels l’entropie était invariante le long des lignes de courant. Même en présence de chocs, où
l’entropie subissait un ressaut, d’un côté et de l’autre du choc l’entropie restait constante le long des
lignes de courants.

De même, l’enthalpie totale restait constante le long des lignes de courants, et en outre, gardait la
même valeur en aval d’un choc sur chaque ligne de courant (mais non à l’intérieur du choc même !).

Même si l’analyse a été menée le long de lignes de courants, la plupart des cas étudiés avait la
particularité supplémentaire que certaines propriétés de l’écoulement étaient uniformes dans tout le
champ.

En particulier, en amont de l’écoulement, l’enthalpie totale et l’entropie ont été, tacitement, choisies
comme étant uniforme. Cela était le cas dans les réservoirs ou pour les écoulements unidimensionnels.
De ce fait, toutes les lignes de courant avaient en amont la même valeur d’entropie et d’enthalpie totale.
Au fil de l’écoulement, comme il n’y avait pas de gradient de ces quantités le long des lignes de courant,
leur gradient dans une direction normale à l’écoulement restait nul également. L’écoulement était donc
homentropique (entropie uniforme) et à enthalpie totale uniforme.

De ce fait, la vorticité était également nulle dans tout l’écoulement, de par la relation de Crocco
(Equation 10.5). Les écoulements étudiés étaient donc irrotationnels, ω = 0.

Cette conclusion reste vraie en aval d’un choc rectiligne. Bien qu’il y ait variation d’entropie au
travers du choc, la variation d’entropie est uniforme le long du choc. L’écoulement en aval du choc reste
ainsi homentropique et irrotationnel (l’enthalpie totale restant invariante).

Une exception classique concerne les écoulements en aval des chocs courbes (localement obliques).
Même pour un écoulement uniforme en amont, l’écoulement sur différentes lignes de courants subit une
déviation différente le long de l’onde de choc courbe, et donc un saut en entropie différent. De ce fait,
même si l’écoulement est à enthalpie totale constante et que l’entropie est uniforme en amont du choc,
l’écoulement en aval (même si isentrope) n’est plus homentrope et devient rotationnel.

Pour ce qui suit, nous ferons l’hypothèse que l’écoulement est homentrope et à enthalpie totale uni-
forme, et donc irrotationnel. En particulier, si des ondes de chocs son présentes, nous ne nous occuperons
que des régions en aval ou en amont, et les régions en aval de chocs courbes ne seront pas prises en
considération.

10.2.1 Nouvelle formulation des équations de conservation pour les écoule-
ments bidimensionnels, irrotationnels

La formulation suivante a été introduite par Liepmann and Roshko (1957), et est devenue classique.
On introduit un référentiel associé à la ligne de courant (référentiel dit naturel) et défini de la manière

suivante. On désigne par ℓ l’abscisse curviligne le long de la ligne de courant et par ϑ la pente locale de
cette ligne (à ne pas confondre avec l’angle θ de l’onde de choc). Les vecteurs ℓ̂ et n̂ sont respectivement
les vecteurs unitaires tangents et perpendiculaires à la courbe (en deux dimensions).

Figure 10.1 – Référentiel des lignes de courant (référentiel naturel)
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Le champ de vitesse u étant traditionnellement représenté par ses composantes (ux, uy) peut main-
tenant être représenté par son module u = ∥u∥ =

√
u2x + u2y ainsi que son angle ϑ, c’est à dire (u, ϑ).

Les projections du vecteur vitesse u dans le système de coordonnées (x, y) sont

ux = ∥u∥ cosϑ, uy = ∥u∥ sinϑ. (10.8)

On a ainsi (u, ϑ) fonction de (ℓ, n). Il est possible de montrer que le rayon de courbure R de la ligne de
courant

1

Rn
=

1

∆n

∂∆n

∂ℓ
=
∂ϑ

∂n
. (10.9)

1

Rl
= − 1

∆ℓ

∂∆ℓ

∂n
=
∂ϑ

∂ℓ
. (10.10)

Conservation de la masse

Par de simples arguments, la conservation de masse dans ce système de coordonnées s’exprime comme
suit

ρu∆n = const. (10.11)

Par différentiation logarithmique

1

ρ

∂ρ

∂ℓ
+

1

u

∂u

∂ℓ
+

1

∆n

∂∆n

∂ℓ
= 0, (10.12)

et en utilisant Equation 10.9, on obtient

1

ρ

∂ρ

∂ℓ
+

1

u

∂u

∂ℓ
+
∂ϑ

∂n
= 0. (10.13)

Conservation de la quantité de mouvement selon ℓ̂

On projette l’équation selon ℓ̂ en remarquant que le vecteur u ∧ (∇∧ u) est perpendiculaire au plan
formé par les vecteurs u et ∇∧ u et donc parallèle à la direction n̂. Soit

u
∂u

∂ℓ
+

1

ρ

∂p

∂ℓ
= 0, (10.14)

et avec la relation isentropique dp = a2dρ

u
∂u

∂ℓ
+
a2

ρ

∂ρ

∂ℓ
= 0. (10.15)

L’utilisation de la conservation de masse conduit alors à

u
∂u

∂ℓ
− a2

[
1

u

∂u

∂ℓ
+
∂ϑ

∂n

]
= 0, (10.16)

ce qui donne, en introduisant M = u/a,

(M2 − 1)
1

u

∂u

∂ℓ
− ∂ϑ

∂n
= 0. (10.17)

Irrotationalité

Il s’agit ici de trouver une expression de la vorticité en coordonnées (l, n) et d’imposer cette vorticité
à être nulle. On utilise le théorème de Stokes liant la circulation autour d’un contour fermé à la vorticité
traversant la surface délimitée par le contour∫

ΩdS =

∮
u · dx, (10.18)
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où le terme Ω représente la composante du vecteur tourbillon perpendiculaire au plan (en 2D, cette
composante est la seule qui subsiste). Comme on choisit de travailler avec des écoulements irrotationnels,
on posera Ω = 0. En faisant utilisation du schéma de la Figure10.1∫

ΩdS ∼ Ω∆ℓ∆n, (10.19)

∮
u · dx ∼ u∆ℓ−

(
u+

∂u

∂n
∆n

)(
∆ℓ+

∂∆ℓ

∂n
∆n

)
, (10.20)

en négligeant les termes de deuxième ordre. On remarquera que l’intégration selon n ne contribuent pas
car la vitesse est perpendiculaire à n. En utilisant Equation 10.10, on obtient

Ω = −∂u
∂n

+ u
∂ϑ

∂ℓ
. (10.21)

Un écoulement plan irrotationnel nous fournit donc la relation

−∂u
∂n

+ u
∂ϑ

∂ℓ
= 0. (10.22)

Conservation de la quantité de mouvement selon n et conservation d’énergie

Nous allons voir que la relation de conservation de quantité de mouvement selon n et la relation de
conservation d’énergie sont essentiellement identique comme l’écoulement est homentropique, irrotation-
nel, et à enthalpie totale uniforme.

En coordonnées (l, n), la conservation de quantité de mouvement selon n donne

u2

Rl
+

1

ρ

∂p

∂n
= 0, (10.23)

soit

u2
∂ϑ

∂ℓ
+

1

ρ

∂p

∂n
= 0. (10.24)

La relation de Gibbs Tds = dh−vdp peut être écrite en fonction de l’enthalpie totale Tds = dh0−udu−
vdp, donnant ainsi selon ℓ et selon n

T
∂s

∂ℓ
=
∂h0
∂ℓ
−
(
u
∂u

∂ℓ
+

1

ρ

∂p

∂ℓ

)
, (10.25)

T
∂s

∂n
=
∂h0
∂n
−
(
u
∂u

∂n
+

1

ρ

∂p

∂n

)
. (10.26)

Pour un écoulement à entropie et à enthalpie totale constante le long d’une ligne de courant, on a alors
∂s/∂l = 0 et ∂h0/∂l = 0, et la première relation (Equation 10.25) nous redonne l’équation de conservation
de quantité de mouvement selon s, Equation 10.14.

Dans la deuxième relation (Equation 10.26), on utilise la conservation de quantité de mouvement
selon n, Equation 10.24, pour obtenir

T
∂s

∂n
=
∂h0
∂n
−
(
u
∂u

∂n
− u2 ∂ϑ

∂ℓ

)
, (10.27)

soit

T
∂s

∂n
=
∂h0
∂n

+ uΩ. (10.28)

Cette relation est l’équation de Crocco en coordonnées naturelles. Elle relie la vorticité Ω à la variation
d’entropie et la variation d’enthalpie totale perpendiculairement aux lignes de courant. Si deux de ces
paramètres sont nuls, le troisième l’est aussi. Ainsi, un écoulement homentropique et à enthapie totale
uniforme est obligatoirement irrotationnel.
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10.2.2 Caractéristiques de l’écoulement
Pour un écoulement homentropique et à enthapie totale uniforme (donc irrotationnel), deux équations

suffisent pour décrire l’écoulement. On choisit la conservation de quantité de mouvement selon ℓ ainsi
que l’équation d’irrotationalité

−∂u
∂n

+ u
∂ϑ

∂ℓ
= 0, (10.29)

(M2 − 1)
1

u

∂u

∂ℓ
− ∂ϑ

∂n
= 0. (10.30)

En introduisant l’angle de Mach µ tel que

tanµ =
1√

M2 − 1
, (10.31)

on a alors

− tanµ

√
M2 − 1

u

∂u

∂n
+
∂ϑ

∂ℓ
= 0, (10.32)

√
M2 − 1

u

∂u

∂ℓ
− tanµ

∂ϑ

∂n
= 0. (10.33)

Il est possible à présent de rappeler la fonction de Prandtl-Meyer écrite en fonction de la vitesse de
l’écoulement, Equation 9.22, écrite en fonction de la vitesse u au lieu de la vitesse w (l’écoulement étant
isentropique, il n’y a pas d’ondes de chocs, et la notation w pour la vitesse n’est pas obligatoire)

dν =
√
M2 − 1

du

u
. (10.34)

Ainsi,

− tanµ
∂ν

∂n
+
∂ϑ

∂ℓ
= 0, (10.35)

∂ν

∂ℓ
− tanµ

∂ϑ

∂n
= 0. (10.36)

En les additionnant et en les soustrayant, on obtient les équations caractéristiques suivantes(
∂

∂ℓ
+ tanµ

∂

∂n

)
(ν − ϑ) = 0, (10.37)

(
∂

∂ℓ
− tanµ

∂

∂n

)
(ν + ϑ) = 0. (10.38)

Ces équations peuvent être interprétées comme suit. Soit les deux ondes de Mach émanant d’un point
de la ligne de courant (Figure 10.2), que l’on dénote m− pour celle à gauche dans le sens de l’écoulement
(ou à babord) et m+ pour celle à droite (à tribord). Soit dm− l’incrément en longueur le long de la ligne
de Mach m−. La dérivée d’une fonction F (l, n) le long de cette ligne de Mach peut s’écrire

dF

dm− =
∂F

∂ℓ

∂ℓ

m− +
∂F

∂n

∂n

m− . (10.39)

La géométrie de la Figure 10.3 donne dl/dm− = cosµ et dn/dm− = sinµ. Ainsi

dF

dm− = cosµ

(
∂F

∂ℓ
+ tanµ

∂F

∂n

)
. (10.40)

De même on trouve
dF

dm+
= cosµ

(
∂F

∂ℓ
− tanµ

∂F

∂n

)
. (10.41)

Ainsi, les équations caractéristiques peuvent s’écrire

d

dm− (ν − ϑ) = 0, (10.42)
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Figure 10.2 – Caractéristiques (ondes de Mach) m+ and m−

d

dm+
(ν + ϑ) = 0. (10.43)

Les ondes de Mach m− et m+ sont les caractéristiques de l’écoulement. On arrive à la conclusion

ν − ϑ = const = G le long de la caractéristique m−, (10.44)

ν + ϑ = const = D le long de la caractéristique m+. (10.45)

que l’on appelle les relations de compatibilité entre ϑ et ν. Les constantes G (pour gauche) et D (pour
droite) sont dénommées les invariants de Riemann.

Nous allons voir comment ce résultat peut être utilisé pour évaluer un champ de vitesse bi-dimensionnel,
homentropique, et irrotationnel.

Une remarque concerne la similitude avec le résultat obtenu dans le Chapitre précédent pour les
écoulements de Prandtl-Meyer. Nous avions obtenu le résultat que la déviation infinitésimale dδ à travers
une onde infinitésimale (onde de Mach) était liée à la fonction Prandtl-Meyer selon d(ν + δ) = 0. Ici,
nous avons obtenu un résultat liant l’angle de l’écoulement et la fonction de Prandtl-Meyer le long des
caractéristiques (ondes de Mach), à savoir d(ν + ϑ) = 0 selon m+ et d(ν − ϑ) = 0 selon m−. Nous
comprendrons le lien entre les deux résultats un peu plus loin.

Nous avons ainsi introduit un nouveau système de coordonnées m+ et m− . Dans le plan (x, y),
nous obtenons par cette transformation deux familles de courbes m+(x, y) = const et m−(x, y) = const
correspondant au réseau d’ondes de Mach de l’écoulement, qui prennent ainsi le rôle d’un nouveau réseau
de coordonnées.

10.3 Méthode de calcul des caractéristiques

Pour le calcul d’un écoulement bidimensionnel supersonique, la méthode est donnée sur la Figure
10.3.

Figure 10.3 – Méthode des caractéristiques
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Les données (ou conditions de bord), tels que ϑ et ν, sont supposées connues dans le plan (x, y) le
long d’une courbe entre deux points 1 et 2 (qui est choisie comme n’étant pas une onde de Mach ou
caractéristique). La connaissance de ν et ϑ équivaut à la connaissance du nombre de Mach M , de la
vitesse u, de l’angle de Mach µ, ou tout autre variable (thermodynamique par exemple). Si l’on trace la
caractéristique m+ émanant du point 1, alors l’on sait que le long de cette caractéristique l’invariant de
Riemmann est D = D1 est donnée par

D = D1 = ν2 − ϑ2. (10.46)

De même l’on trace la caractéristique m− émanant du point 2, et le long de cette caractéristique
l’invariant de Riemmann est G = G2 est donnée par

D3 = D1, (10.47)

G3 = G2, (10.48)

donnant ainsi
ν3 + ϑ3 = ν1 + ϑ1. (10.49)

ν3 − ϑ3 = ν2 − ϑ2, (10.50)

La solution se trouvent aisément à partir de ces deux relations

ν3 =
1

2
(ν1 + ν2) +

1

2
(ϑ1 − ϑ2), (10.51)

ϑ3 =
1

2
(ν1 − ν2) +

1

2
(ϑ1 + ϑ2). (10.52)

ou, d’une manière générale

ν =
1

2
(D +G), (10.53)

ϑ =
1

2
(D −G). (10.54)

Ainsi, la solution au point 3 semble se trouver d’une manière simple et élégante. Il reste cependant des
inconnues dans ce problème : les caractéristiques elles mêmes.

La méthodologie de résolution se fait numériquement par étapes intermédiaires, en subdivisant la
région 123 en un maillage de segments droits correspondant aux ondes de Mach locales (Figure 10.4. Par
exemple, le point 5 est rejoint par des ondes de Mach droites émanant des points 1 et 4. Les conditions
en 5 sont déterminées à partir des données en 1 et 4. Le point 7 est déterminé d’une manière similaire,
et le point 8 se trouve à partir des points 5 et 7. Ainsi, le calcul procède en partant en aval de la ligne de
données entre les points 1 et 2, donc vers la zone d’influence. Ceci est une particularité des écoulements
compressibles (supersoniques), contrairement aux écoulements incompressibles pour lesquels les données
doivent être spécifiées sur le pourtour de la région.

Figure 10.4 – Réseau de caractéristiques droites pour l’évaluation
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Figure 10.5 – Données pour l’évaluation en un point 3, de gauche à droite : point intérieur, paroi,
surface libre

Ecoulements intérieurs Pour un point intérieur à l’écoulement, nous avons vu comment les carac-
téristiques D et G permettaient de trouver des propriétés pour d’autres points en aval. La situation est
présentée sur la Figure 10.5.

Pour des données en deux points 1 et 2, les données en 3 sont trouvées à partir des caractéristiques
D1 et G2 selon

ν3 =
1

2
(D1 +G2), (10.55)

ϑ3 =
1

2
(D1 −G2). (10.56)

Ecoulements avec paroi Si le point 3 se trouve sur une paroi, la direction de l’écoulement en ce
point est donnée (ϑ3). Ainsi, l’on a bien deux paramètres connus, D1 et ϑ3, ce qui permet d’évaluer ν3
selon

ν3 = ν1 + ϑ1 − ϑ3 = D1 − ϑ3. (10.57)

Ecoulements avec surface libre Si le point 3 se trouve sur une surface libre (surface de cisaillement
ou de contact), la pression est a priori connue en ce point, et donc la fonction de Prandtl-Meyer ν3. Ainsi,
l’on a encore bien deux paramètres connus, D1 et ν3, ce qui permet d’évaluer ϑ3 selon

ϑ3 = ν1 + ϑ1 − ν3 = D1 − ν3. (10.58)

Ecoulement supersonique dans une conduite bidimensionnelle La procédure que l’on vient de
décrire permet ainsi d’évaluer l’écoulement dans une conduite supersonique bi-dimensionnelle (et, en
particulier, on n’a plus besoin de faire l’hypothèse que l’écoulement est quasi-unidimensionnel comme
dans les Chapitres précédents).

La Figure 10.6 présente la méthodologie. Les données sont distribuées sur une ligne bc ainsi que sur
les parois ahq et dlt. En se basant sur les différents cas du paragraphe précédent, il est possible d’évaluer
les données sur tous les noeuds du maillage intérieur.

Figure 10.6 – Evaluation de l’écoulement dans une tuyère bidimensionnelle supersonique
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Régions non simples Comme les caractéristiques, rappelons-le, sont identiques aux ondes de Mach, la
solution de l’écoulement dans une tuyère supersonique dans le paragraphe précédent représente également
la solution au problème de réflexions de faisceau de Prandtl-Meyer sur une paroi ou l’interaction de
faisceaux de Prandtl-Meyer à l’intérieur d’un écoulement. Le réseau de caractéristiques sous cette forme
générale forme une région qu’on appelle non-simple (Figure 10.7). Elle se résout par la méthode du
paragraphe précédent.

Figure 10.7 – Région non simple

Régions uniformes Dans un écoulement uniforme, l’écoulement est unidirectionnel (donc avec des
valeurs de ϑ constantes) et à nombre de Mach constant (donc avec des valeurs de ν constantes). De ce
fait, les caractéristiques (et ondes de Mach) m+ et m− sont rectilignes (Figure 10.8). Dans ce cas, elles
sont généralement omises des schémas.

Figure 10.8 – Région uniforme

Régions simples Dans une compression ou détente de Prandtl-Meyer, le faisceau d’ondes est recti-
ligne : c’est celui qui a été tracé dans le Chapitre précédent pour les écoulements de Prandtl-Meyer (il
peut s’agir de caractéristiques m+ ou m−). Or, nous savons maintenant qu’il existe un deuxième ré-
seau de caractéristiques correspondant au faisceau de Prandtl-Meyer (Figure 10.9). Ce deuxième réseau
n’est pas composé de caractéristiques rectilignes. On parle alors de région simple de caractéristiques.
On remarquera que, comme le nombre de Mach (et donc ν) et la direction de l’écoulement (donc ϑ)
sont inviduellement constants le long d’une ligne du faisceau de Prandtl-Meyer (comme on l’a vu dans
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le Chapitre précédent), on en conclut que l’invariant de Riemann sur le deuxième réseau a la même
valeur sur chaque caractéristique. En effet, si on considère que le faisceau de Prandtl-Meyer correspond
à des caractéristiques droites m− (par exemple), alors toutes les caractéristiques m+ intersectant une
caractéristique (ou onde de Mach) particulière m−

0 (sur laquelle ν = const = ν0 et ϑ = const = ϑ0)
auront toutes pour valeur D = ν0 + ϑ0. Ainsi, tout le réseau m+ a la même valeur pour l’invariant de
Riemann D = D0. En particulier, pour n’importe caractéristique m+ intersectant une caractéristique
m−

1 particulière, on aura
ν1 + ϑ1 = ν0 + ϑ0, (10.59)

c’est à dire
ν1 − ν0 = −(ϑ1 − ϑ0). (10.60)

Cette relation n’est rien d’autre que la relation de Prandtl-Meyer pour une ligne de courant traversant
un faisceau de Prandtl-Meyer avec la déviation δ = ϑ1 − ϑ0.

Figure 10.9 – Région simple
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Annexe A

Vector and Tensor Identities

A.1 Operations with vectors

a · b ≡ aibi (A.1)

[a ∧ b]i ≡ ϵijkajbk (A.2)

∇ · a ≡ ∂

∂xi
ai (A.3)

[∇ ∧ a]i ≡ ϵijk
∂

∂xj
ak (A.4)

[∇α]i ≡
∂

∂xi
α (A.5)

a ∧ b = −b ∧ a (A.6)

a · (b ∧ c) = b · (c ∧ a) (A.7)

a ∧ (b ∧ c) = (a · c)b− (a · b)c (A.8)

(a ∧ b) · (c ∧ d) = (a · c)(b · d)− (a · d)(b · c) (A.9)

∇ · (αa) = ∇α · a+ α∇ · a (A.10)

∇ · (∇ ∧ a) = 0 (A.11)

∇ ∧ (∇α) = 0 (A.12)

∇ ∧ (αa) = (∇α) ∧ a+ α∇ ∧ a (A.13)

∇ ∧ (∇ ∧ a) = ∇(∇ · a)−∇ ·∇a (A.14)

∇(a · b) = a · (∇b) + b · (∇a) + a ∧ (∇ ∧ b) + b ∧ (∇ ∧ a) (A.15)

∇(a · b) = a(∇ · b) + b(∇ · a) + (a ∧∇) ∧ b+ (b ∧∇) ∧ a (A.16)

∇(a · b) = (∇a) · b+ (∇b) · a (A.17)

∇ · (a ∧ b) = (∇ ∧ a) · b− a · (∇ ∧ b) (A.18)

∇ ∧ (a ∧ b) = a(∇ · b)− b(∇ · a) + b · (∇a)− a · (∇b) (A.19)

∇ ∧ (a ∧ b) = a ∧ (∇ ∧ b)− (a ∧∇) ∧ b− b ∧ (∇ ∧ a) + (b ∧∇) ∧ a (A.20)

a ∧ (∇ ∧ b)− (a ∧∇) ∧ b = a(∇ · b)− a · (∇b) (A.21)

∇(a · a) = 2a ∧ (∇ ∧ a) + 2a · (∇a) (A.22)

∇(a · a) = 2 (∇a) · a (A.23)

(∇a) · a = a · (∇a) + a ∧ (∇ ∧ a) (A.24)
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A.2 Operations with tensors

[A · a]i ≡ Aijaj (A.25)

[a · A]i ≡ ajAji (A.26)

ATij ≡ Aji (A.27)

[A : B]ij ≡ AijBij (A.28)

[A · B]ij ≡ AikBkj (A.29)

[∇ · A]i ≡
∂

∂xj
Aji (A.30)

[∇ ∧ A]ij ≡ ϵilm
∂

∂xl
Amj (A.31)

[dualA]i ≡
1

2
ϵijkAjk (A.32)

TrA = Aii (A.33)

DetA =
1

6
ϵijkϵpqrAipAjqAkr (A.34)

(A · B)T = BT · AT (A.35)

A · a = a · AT (A.36)

A · B · a = A · (B · a) = (A · B) · a (A.37)

(A · a) · B ̸= A · (a · B) (A.38)

∇ · (αA) = ∇α · A+ α∇ · A (A.39)

∇ ∧ (αA) = (∇α) ∧ A+ α∇ ∧ A (A.40)

∇ · (A · a) = (∇ · A) · a+ A : (∇a) (A.41)

∇ · (a · A) = Tr (∇a · A) + a ·∇ · AT (A.42)

∇ ∧ (A · a) = (∇ ∧ A) · a− 2 dual [A · (∇a)T ) (A.43)

∇ · (∇ ∧ A) = 0 (A.44)

∇ · (∇ ∧ A)T = ∇ ∧∇ · (AT ) (A.45)

∇ ∧ (∇ ∧ A) = ∇(∇ · A)−∇ ·∇A (A.46)

A : B = B : A (A.47)

A : BT = AT : B (A.48)

A : BT = Tr (A · B) (A.49)

Tr (A · B) = Tr (B · A) (A.50)

dualAT = −dualA (A.51)

∇ ∧ dualA =
1

2
∇ · (AT − A) (A.52)

dual∇ ∧ A =
1

2
(∇ · AT −∇TrA) (A.53)

∇ · dualA =
1

2
Tr∇ ∧ A (A.54)

dualA · dualB =
1

4
A : (B− BT ) (A.55)

dualA · dualB =
1

4
(A− AT ) : B (A.56)
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A.3 Operations with anti-symmetric tensors W

Wij ≡ −Wji (A.57)

TrW = 0 (A.58)

W · a = −(dualW) ∧ a (A.59)

a ·W = −a ∧ (dualW) (A.60)

∇ ·W = −∇ ∧ (dualW) (A.61)

∇ ·WT = ∇ ∧ (dualW) (A.62)

dual∇ ∧W = −1

2
∇ ·W (A.63)

W : ∇a = (dualW) ·∇ ∧ a (A.64)

{
Wa ≡ dual−1a
[Wa]ij ≡ ϵijkak

(A.65)

a ∧ b = −Wa · b (A.66)

a ∧ b = −a ·Wb (A.67)

∇ ∧ a = −∇ ·Wa (A.68)

∇ ∧ a = ∇ ·WT
a (A.69)

a ·∇ ∧ b = Wa : ∇b (A.70)

a ∧ A = −Wa · A (A.71)

A ∧ a = −A ·Wa (A.72)

a · (b ∧ A) = (a ∧ b) · A (A.73)

(A ∧ a) · b = A · (a ∧ b) (A.74)

(a ∧ A) · b = a ∧ (A · b) (A.75)

a · (A ∧ b) = (a · A) ∧ b (A.76)

a ∧ (A ∧ b) = (a ∧ A) ∧ b (A.77)

∇ ∧ (A ∧ a) = A(∇ · a) + (a ·∇)A− (∇ · AT )a− (A ·∇)a (A.78)

A.4 Operations with symmetric tensors S

Sij = Sji (A.79)

dualS = 0 (A.80)

Tr∇ ∧ S = 0 (A.81)
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A.5 Operations with dyadics

[ab]ij = aibj (A.82)

(ab) · (cd) = a(b · c)d (A.83)
(ab) ∧ c = a(b ∧ c) (A.84)
a ∧ (bc) = (a ∧ b)c (A.85)

(ab) ∧ (cd) = a(b ∧ c)d (A.86)
c ∧ (a ∧ b) = c · (ba− ab) (A.87)
c ∧ (a ∧ b) = (ab− ba) · c (A.88)

dual (ab) =
1

2
a ∧ b (A.89)

dual (ab+ ba) = 0 (A.90)
dual (ab− ba) = a ∧ b (A.91)

Wa ·Wb = ba− (a · b)I (A.92)

[∇a]ij =
∂

∂xi
aj (A.93)

a · (∇b) = (a ·∇)b (A.94)
∇(αa) = (∇α)a+ α∇a (A.95)

∇ · (∇a)T = ∇(∇ · a) (A.96)
∇ ∧ (∇a) = 0 (A.97)

∇ ∧ (∇a)T = (∇∇ ∧ a)T (A.98)

∇(a ∧ b) = (∇a) ∧ b− (∇b) ∧ a (A.99)
∇ · (ab) = (∇ · a)b+ (a ·∇)b (A.100)

∇ ∧ (ab) = (∇ ∧ a)b− (a ∧∇)b (A.101)
[(∇a)T −∇a] · b = (∇ ∧ a) ∧ b (A.102)
∇ ∧ (a ∧ b) = ∇ · (ba− ab) (A.103)

A.6 Operations with the unit tensor I

I · a = a · I = a (A.104)
I ∧ a = a ∧ I = −Wa (A.105)
a ∧ b = (I ∧ a) · b (A.106)
(I ∧ a)2 = aa− I (A.107)
(I ∧ a)3 = −I ∧ a (A.108)
(I ∧ a)4 = I− aa (A.109)
(I ∧ a)5 = I ∧ a (A.110)

(a ∧ b) ∧ I = ba− ab (A.111)
a ∧ b = (I ∧ a) · b (A.112)
a ∧ b = a · (I ∧ b) (A.113)
I · A = A · I = A (A.114)
I : ∇a = ∇ · a (A.115)
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A.7 Operations with vectors, dyadics, and tensors that use the
position vector

A.7.1 Operations with one position vector

∇ · x = N (A.116)

∇ ∧ x = 0 (A.117)

∇x = I (A.118)

∇ · (αx) = x ·∇α+Nα (A.119)

∇(αx) = (∇α)x+ αI (A.120)

∇2(x) = 0 (A.121)

∇2(αx) = x(∇2α) + 2∇α (A.122)

A.7.2 Operations with one arbitrary vector and one position vector

∇ · (x ∧ a) = −x · (∇ ∧ a) (A.123)

∇ · (a ∧ x) = x · (∇ ∧ a) (A.124)

∇ ∧ (αx) = (∇α) ∧ x (A.125)

∇ ∧ (x ∧ a) = x(∇ · a)− (N − 1)a− (x ·∇)a (A.126)

∇(x · a) = (x ·∇)a+ a+ x ∧ (∇ ∧ a) (A.127)

∇(x · a) = a+ (∇a) · x (A.128)

(∇a) · x = (x ·∇)a+ x ∧ (∇ ∧ a) (A.129)

(a ∧∇) ∧ x = −2a (A.130)

∇(x · a) = (x ∧∇) ∧ a+ x∇ · a+ (N − 2)a (A.131)

∇ ∧ (a ∧ x) = 2a− x ∧ (∇ ∧ a) + (x ∧∇) ∧ a (A.132)

∇(x ∧ a) = I ∧ a− (∇a) ∧ x (A.133)

∇ · (ax) = (∇ · a)x+ a (A.134)

∇ · (xa) = Na+ (x ·∇)a (A.135)

∇ · (xa− ax) = ∇ ∧ (a ∧ x) (A.136)

∇ · (xa+ ax) = 2a+ 2(∇ · a)x+∇ ∧ (a ∧ x) (A.137)

x ∧ (∇ ∧ a) = (N − 1)a+∇(x · a)−∇ · (xa) (A.138)

x ∧ (∇ ∧ a) = (N − 2)a+∇(x · a)−∇ ∧ (a ∧ x)− (∇ · a)x (A.139)

∇ ∧ [x ∧ (∇ ∧ a)] = −(N − 1)∇ ∧ a− (x ·∇)∇ ∧ a (A.140)

A.7.3 Operations with two arbitrary vectors and one position vector

∇ · [(a ∧ b)x] = [(x ·∇)a] ∧ b+ a ∧ [(x ·∇)b] +Na ∧ b (A.141)

∇ · [(a ∧ b)x] = [(∇ ∧ a) · b− a · (∇ ∧ b)]x+ a ∧ b (A.142)

(a ·∇)(x ∧ b) = a ∧ b+ x ∧ (a ·∇)b (A.143)
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A.7.4 Operations with tensors and one position vector

∇ · (S ∧ x) = −x ∧ (∇ · S) (A.144)

∇ · (W ∧ x) = −2w + x ∧ (∇ ∧w) (A.145)

∇ · (x ∧ A) = −x · (∇ ∧ A) (A.146)

∇ ∧ [x(∇ · u)] = Ω (A.147)



Annexe B

Thermodynamics : Maxwell Equations and
Jacobians

B.1 Mathematics
The total (exact, proper) differential of z = z(x, y) is given by :

Total differential
dz =

(
∂z

∂x

)
y

dx+

(
∂z

∂y

)
x

dy (B.1)

Reciprocally, if
dz =Mdx+Ndy. (B.2)

then the relation is a total differential if and only if :(
∂M

∂y

)
x

=

(
∂N

∂x

)
y

, (B.3)

that is :

Cross derivatives (
∂

∂y

(
∂z

∂x

)
y

)
x

=

(
∂

∂x

(
∂z

∂y

)
x

)
y

(B.4)

If x = x(y, z) and y = y(x, z) then :

dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz and dy =

(
∂y

∂x

)
z

dx+

(
∂y

∂z

)
x

dz. (B.5)

and inserting dy from the second relation into the first relation, and collecting the terms in dx and dz[
1−

(
∂x

∂y

)
z

(
∂y

∂x

)
z

]
dx =

[(
∂x

∂y

)
z

(
∂y

∂z

)
x

+

(
∂x

∂z

)
y

]
dz (B.6)

Since x and z can be varied independently, we can set dz = 0 and dx = 0 separately, giving respectively,
the reciprocal relation (

∂x

∂y

)
z

(
∂y

∂x

)
z

= 1 or (B.7)

Reciprocal relation (
∂x

∂y

)
z

=
1(
∂y

∂x

)
z

(B.8)
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and the reciprocity relation (
∂x

∂y

)
z

(
∂y

∂z

)
x

= −
(
∂x

∂z

)
y

or (B.9)

Reciprocity relation (
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1 (B.10)

These relations can be obtained in an alternative manner. From :

dz =

(
∂z

∂x

)
y

dx+

(
∂z

∂y

)
x

dy. (B.11)

then by dividing by dz for y constant (dy = 0) :

1 =

(
∂z

∂x

)
y

(
∂x

∂z

)
y

+ 0 →
(
∂x

∂y

)
z

=
1(
∂y

∂x

)
z

. (B.12)

Similarly, dividing by dx keeping z constant (dz = 0) :

0 =

(
∂z

∂x

)
y

(
∂x

∂x

)
z

+

(
∂z

∂y

)
x

(
∂y

∂z

)
z

→
(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1. (B.13)

B.2 Maxwell Equations

From Gibbs equations :

de = Tds− pdv (B.14)
dh = Tds+ vdp (B.15)

and the associated total differentials :

de =

(
∂e

∂s

)
v

ds+

(
∂e

∂v

)
s

dv (B.16)

dh =

(
∂h

∂s

)
p

ds+

(
∂h

∂p

)
s

dp (B.17)

then we deduce :

T =

(
∂e

∂s

)
v

(B.18)

p = −
(
∂e

∂v

)
s

(B.19)

T =

(
∂h

∂s

)
p

(B.20)

v =

(
∂h

∂p

)
s

(B.21)

and by cross-derivatives, we obtain :
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Maxwell relations I (
∂p

∂s

)
v

= −
(
∂T

∂v

)
s

(B.22)(
∂v

∂s

)
p

=

(
∂T

∂p

)
s

(B.23)

Using other thermodynamic potentials, such as Helmholtz free energy f and Gibbs free energy g :

f = e− Ts (B.24)
g = h− Ts (B.25)

then

df = −sdT − pdv (B.26)
dg = −sdT + vdp (B.27)

hence

s = −
(
∂f

∂T

)
v

(B.28)

p = −
(
∂f

∂v

)
T

(B.29)

s = −
(
∂g

∂T

)
p

(B.30)

v =

(
∂g

∂p

)
T

(B.31)

from which we deduce :

Maxwell relations II (
∂s

∂v

)
T

=

(
∂p

∂T

)
v

(B.32)(
∂s

∂p

)
T

= −
(
∂v

∂T

)
p

(B.33)

B.3 Jacobian methods
The material in this section comes from Carroll (1965); Crawford (1949); Margenau and Murphy

(1956); Shaw (1935); Sherwood and Reed (1939); Tribus (1961); ?.
The Jacobian can be written as :

∂(A,B)

∂(C,D)
=

[A,B]

[C,D]
=

∮
AdB∮
C dD

=

∣∣∣∣∣∣∣∣
(
∂A

∂C

)
D

(
∂A

∂D

)
C(

∂B

∂C

)
D

(
∂B

∂D

)
C

∣∣∣∣∣∣∣∣ =
(
∂A

∂C

)
D

(
∂B

∂D

)
C

−
(
∂A

∂D

)
C

(
∂B

∂C

)
D

(B.34)

Properties :
[A,B]

[C,B]
=

(
∂A

∂C

)
B

(B.35)
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Then we can write :
[A,B]

[C,D]
=

[A,D]

[C,D]

[B,C]

[D,C]
− [A,C]

[D,C]

[B,D]

[C,D]
(B.36)

If the independent variables are obvious, then we can simplify the notation :

[A,B]

[C,D]
= [A,B] (B.37)

[A,B] = − [B,A] or
∂(A,B)

∂(C,D)
=
∂(B,A)

∂(C,D)
(B.38)

[A,A] = 0 (B.39)

dA =

(
∂A

∂B

)
C

dB +

(
∂A

∂C

)
B

dC =
[A,C]

[B,C]
dB +

[A,B]

[C,B]
dC (B.40)

→ [C,B] dA = [C,B]
[A,C]

[B,C]
dB + [C,B]

[A,B]

[C,B]
dC

→ [A,B] dC + [B,C] dA+ [C,A] dB = 0 (B.41)

→ [A,B]

(
∂C

∂Z

)
D

+ [B,C]

(
∂A

∂Z

)
D

+ [C,A]

(
∂B

∂Z

)
D

= 0

→ [A,B]
[C,D]

[Z,D]
+ [B,C]

[A,D]

[Z,D]
+ [C,A]

[B,D]

[Z,D]
= 0

→ [A,B] [C,D] + [B,C] [A,D] + [C,A] [B,D] = 0 (B.42)

Using
dA = b dB + c dC (B.43)

with
b =

(
∂A

∂B

)
C

and c =

(
∂A

∂C

)
B

then : (
∂A

∂Z

)
D

= b

(
∂B

∂Z

)
D

+ c

(
∂C

∂Z

)
D

→ [A,D]

[Z,D]
= b

[B,D]

[Z,D]
+ c

[C,D]

[Z,D]

→ [A,D] = b [B,D] + c [C,D] (B.44)

Using Gibbs equations, we find :
[e,D] = T [s,D]− p [v,D] (B.45)

[h,D] = T [s,D] + v [p,D] (B.46)

[f,D] = −s [T,D]− p [v,D] (B.47)

[g,D] = −s [T,D] + v [p,D] (B.48)

Converting Maxwell equations : (
∂p

∂s

)
v

= −
(
∂T

∂v

)
s(

∂v

∂s

)
p

=

(
∂T

∂p

)
s(

∂s

∂v

)
T

=

(
∂p

∂T

)
v(

∂s

∂p

)
T

= −
(
∂v

∂T

)
p
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using Jacobians, gives :

[p, v]

[s, v]
= − [T, s]

[v, s]

[v, p]

[s, p]
=

[T, s]

[p, s]

[s, T ]

[v, T ]
=

[p, v]

[T, v]

[s, T ]

[p, T ]
= − [v, p]

[T, p]

that is, one single equation :
[p, v] = [T, s] (B.49)

which means that : ∮
p dv =

∮
T ds (B.50)

which could have been inferred from Gibbs equation de = Tds− pdv since :∮
de = 0 (B.51)

B.4 Measurable quantities

Coefficient of isothermal compressibility : α
T
= −1

v

(
∂v

∂p

)
T

= −1

v

[v, T ]

[p, T ]
(B.52)

Coefficient of isobaric thermal expansion : βp =
1

v

(
∂v

∂T

)
p

=
1

v

[v, p]

[T, p]
(B.53)

Specific heat at constant pressure : cp = T

(
∂s

∂T

)
p

= T
[s, p]

[T, p]
(B.54)

Specific heat at constant volume : cv = T

(
∂s

∂T

)
v

= T
[s, v]

[T, v]
(B.55)

B.5 Speed of sound

The speed of sound is defined as :

a2 ≡
(
∂p

∂ρ

)
s

= −v2
(
∂p

∂v

)
s

(B.56)

(
∂p

∂v

)
s

=
[p, s]

[v, s]
=

[s, p]

[s, v]
=

T
[s, p]

[T, p]
[T, p]

T
[s, v]

[T, v]
[T, v]

=
cp [T, p]

cv [T, v]
=
cp [p, T ]

cv [v, T ]
=
cp
cv

(
∂p

∂v

)
T

(B.57)

Isentropic speed of sound

a2 =

(
∂p

∂ρ

)
s

=
cp
cv

(
∂p

∂ρ

)
T

= γ

(
∂p

∂ρ

)
T

(B.58)
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B.6 Meyer equation

cv = T
[s, v]

[T, v]
= T

[s, v]

[T, p]

[T, v]

[T, p]

= T

[s, v]

[T, p]

[v, T ]

[p, T ]

= − T

vα
T

[s, v]

[T, p]
(B.59)

Using Equation B.36 :
[s, v]

[T, p]
=

[s, p]

[T, p]

[v, T ]

[p, T ]
− [s, T ]

[p, T ]

[v, p]

[T, p]
(B.60)

and with [s, T ] = [v, p] :

[s, v]

[T, p]
=

[s, p]

[T, p]

[v, T ]

[p, T ]
− [v, p]

[p, T ]

[v, p]

[T, p]
=

[s, p]

[T, p]

[v, T ]

[p, T ]
+

[v, p]

[T, p]

[v, p]

[T, p]
(B.61)

[s, v]

[T, p]
=
cp
T
(−vα

T
) + v2β2

p (B.62)

then :
cv = −

T

vα
T

[cp
T
(−vα

T
) + v2β2

p

]
(B.63)

cv = cp − Tv
β2
p

α
T

(B.64)

or :

Meyer equation

cp − cv = Tv
β2
p

α
T

(B.65)

This relation can also be obtained from Equation B.42 :

[T, s] [p, v] + [s, p] [T, v] + [p, T ] [s, v] = 0 (B.66)

With [T, s] = [p, v] :
[p, v] [p, v] +

cp
T

[T, p] [T, v] + [p, T ]
cv
T

[T, v] = 0 (B.67)

cp − cv = T
[p, v] [p, v]

[T, p] [v, T ]
= T

[v, p] [v, p]

[T, p] [T, p]

[T, p]

[v, T ]
= −T

(
[v, p]

[T, p]

)2
1

[v, T ]

[p, T ]

= Tv
β2
p

α
T

(B.68)

B.7 Joule-Thomson coefficient

µ
JT

=

(
∂T

∂p

)
h

=
[T, h]

[p, h]
=

[T, h]

[T, p]

[p, h]

[T, p]

= −

[h, T ]

[p, T ]

[h, p]

[T, p]

(B.69)

Using Gibbs equation dh = Tds+ vdp

[h, T ]

[p, T ]
= T

[s, T ]

[p, T ]
+ v (B.70)

[h, p]

[T, p]
= T

[s, p]

[T, p]
(B.71)
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With :
[s, T ]

[p, T ]
=

[v, p]

[p, T ]
= − [v, p]

[T, p]
= −vβp (B.72)

T
[s, p]

[T, p]
= cp (B.73)

then :

µ
JT

=
βpT − 1

ρcp
(B.74)
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Annexe C

Chaleurs Spécifiques

L’objectif de ce Chapitre annexe est de présenter les grandes lignes du comportement des chaleurs
spécifiques d’un gaz en fonction de la température. Pour de plus amples détails, le lecteur peut se référer
à l’ouvrage classique de Vincenti and Kruger (1967). La discussion présente suit fidèlement l’exposé dans
les ouvrages de Liepmann and Roshko (1957, Chap. 14), ainsi que l’ouvrage de Thompson (1972, Chap.
2).

C.1 Eléments de physique statistique et quantique

C.1.1 Degrés de liberté d’une molécule
Un gaz parfait est constitué de molécules qui n’interagissent que très peu entre elles (sauf lors de

collisions, qui n’occupent qu’une fraction infime du temps de vie d’une molécule), et la contribution de
l’énergie potentielle résultant des interactions intermoléculaires à l’énergie interne est négligeable. Toute
l’énergie du gaz réside donc dans la molécule elle même. Sous ces conditions, le théorème d’équipartition
de la physique statistique classique prévoit une énergie moléculaire moyenne de 1/2 · kT par degrés de
liberté de la molécule, où k est la constante de Boltzmann et T la température. Le nombre de degrés de
liberté f (f pour freedom en anglais) est simplement le nombre de coordonnées généralisées requises pour
fixer l’état d’énergie de la molécule, qui peut alors s’écrire comme la somme de f termes quadratiques
en ces coordonnées généralisées.

Degrés de liberté associés à la translation d’une molécule

Pour une molécule de masse m et de coordonnées x1, x2, x3, le nombre de degrés de liberté associés
à sa translation est égal à f = 3 correspondant aux coordonnées généralisées (quantité de mouvement)
p1 = mẋ1, p2 = mẋ2, p3 = mẋ3 de la molécule avec l’énergie (cinétique) associée p21/2m+p22/2m+p21/2m.

Degrés de liberté associés à la vibration d’une molécule (diatomique)

Une molécule diatomique aura (outre des degrés de liberté associés à sa translation et sa rotation)
des degrés de liberté supplémentaires associés à sa vibration. Avec la fréquence propre de vibration de la
molécule ω, l’énergie de vibration peut s’écrire en fonction de deux coordonnées généralisées (allongement
x du “ressort” et quantité de mouvement p = mẋ) comme p2/2m+mω2x2/2, donnant ainsi f = 2 degrés
de liberté associés à sa vibration.

C.1.2 Energie et enthalpie interne d’un gaz
D’une manière générale, l’énergie interne d’une molécule avec f degrés de liberté est égale à :

ϵ =
f

2
kT. (C.1)

Un gaz contenant des molécules avec f degrés de liberté a donc une énergie interne massique e donnée
par

e =
f

2
rT. (C.2)

L’enthalpie spécifique est alors

h = e+ pv =
f

2
rT + rT =

f + 2

2
rT (C.3)
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C.1.3 Chaleurs spécifiques et γ

Les chaleurs spécifiques sont alors égales à

cv =
f

2
r

cp =
f + 2

2
r

(C.4)

donnant ainsi pour le rapport des chaleurs spécifiques

γ =
f + 2

f
. (C.5)

Un gaz parfait satisfaisant le théorème classique d’équipartition d’énergie est ainsi calorifiquement
parfait car γ = cste.

C.1.4 Gaz monoatomique
Pour un gaz monoatomique (He, Ne, Ar, etc.) avec la structure moléculaire la plus simple, il n’y a

que 3 degrés de liberté associés avec la translation de la molécule, donnant ainsi f = 3. La relation (C.5)
donne

γ =
5

3
= 1.667 (C.6)

qui est bien confirmé par l’expérience (Figure C.1).

Figure C.1 – Variation avec la température de la chaleur spécifique de gaz formés de molécules mono-
atomiques, diatomiques, et triatomiques

C.1.5 Gaz formé de molécules complexes
A l’autre extrême, un gaz composé de molécules complexes aura un nombre de degrés de liberté f

très grand f →∞ et aura ainsi un rapport de chaleurs spécifiques γ tendant vers 1.
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Ainsi, d’une manière générale,
1 ≤ γ ≤ 1.667 (C.7)

C.1.7 Gaz diatomique

Pour une molécule diatomique (formée de deux atomes) telle H2, N2, O2, etc., le nombre de degrés
de liberté s’évalue comme suit

Translation du centre de masse f = 3
Rotation par rapport à 2 axes principaux f = 2
Vibration par rapport au centre de masse f = 2

f = 7

Cette valeur de f donne un rapport de chaleur spécifiques égal à γ = 9/7 = 1.286. Expérimentalement
(Figure C.1), on observe que la valeur de γ est plus proche de 1.4 à des températures ambiantes, et
diminue vers cette valeur de 1.286 à des températures plus élevées (quelques milliers de kelvin). La
théorie classique de l’équipartition semble donner la bonne valeur seulement aux températures élevées.
La raison est que la théorie de la physique classique ne prend pas en compte correctement la quantification
de l’énergie. Ce phénomène est d’ailleurs évident dans le cas de la molécule d’hydrogène (Figure C.1).
A des températures faibles (moins de 100 K), le γ de l’hydrogène est sensiblement identique à celui
des molécules monoatomiques, comme si les degrés de liberté de rotation et de vibration n’avaient pas
été activées. A des températures très élevées, on retrouve γ = 9/7, tandis que pour les températures
intermédiaires, la valeur γ = 1.4 refait son apparition.

Sans vouloir rentrer dans les détails de la mécanique quantique, il suffit de mentionner que les degrés
de liberté sont activés ou activés seulement à partir de certaines valeurs de température. On appelle θ la
température d’excitation, et on y ajoute l’indice r ou v selon qu’il s’agisse de l’excitation de la rotation
ou de la vibration. Les valeurs de ces températures pour des gaz communs sont indiquées sur le Tableau.

θr, K θv, K
H2 87.5 6 325
N2 2.9 3 393
O2 2.1 2 273

Table C.1 – Température d’excitation des degrés de liberté de molécules diatomiques.

Quand la température est inférieure à θr, seule le degré de liberté de translation intervient, et la
molécule diatomique peut être assimilée à un gaz monoatomique avec f = 3 et γ = 5/3 = 1.667.

Quand la température est nettement supérieure à θr mais largement inférieure à θv, seuls les trois
degrées de liberté de translation et les deux degrés de liberté de rotation sont activés, et l’on a alors
f = 3 + 2 = 5 et γ = 7/5 = 1.4.

Finalement, quand la température est largement supérieure à θv, les degrés de liberté de translation,
de rotation et de vibration sont activés, et l’on a alors f = 3 + 2 + 2 = 7 et γ = 9/7 = 1.286.

Il est à remarquer que pour des températures communément rencontrées en ingénierie, le degré de
liberté de rotation est toujours activé.

La mécanique quantique montre alors que dans la plage de température proche de θv, les chaleurs
spécifiques varie avec la température selon les relations

cv = r

[
5

2
+

(θv/T )
2eθv/T

(eθv/T − 1)2

]

cp = cv + r = r

[
7

2
+

(θv/T )
2eθv/T

(eθv/T − 1)2

] (C.8)

En résumé
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T ≪ θr, f = 3, cv =
3

2
r, cp =

5

2
r, γ =

5

3
= 1.667

θr ≪ T ≪ θv, f = 3 + 2, cv =
5

2
r, cp =

7

2
r, γ =

7

5
= 1.4

T ≫ θv, f = 3 + 2 + 2, cv =
7

2
r, cp =

9

2
r, γ =

9

7
= 1.286

(C.9)

A des températures plus élevées que θv, d’autres phénomènes entrent en jeu, en particulier la dis-
sociation et l’ionisation. Dans ce cours, ces phénomènes ne seront pas pris en compte. Ils font partie
intégrante d’un cours en hypersonique.

C.1.8 Gaz triatomique
Certains gaz triatomiques se retrouvent communément dans de nombreuses situations d’ordre pra-

tique, en particulier dans les problèmes associés aux phénomènes de combustion. Ces gaz sont l’eau
(H2O) et le dioxyde de carbone (CO2), les produits principaux issus de la combustion d’hydrocarbures
avec l’oxygène. Le comportement du γ de ces gaz en fonction de la température apparaît sur la Figure
C.1.

La molécule de dioxyde de carbone voit ses degrés de liberté de vibration activés à des températures
assez faibles. Ainsi, dans les plages de température rencontrées communément en ingénierie, γ varie assez
fortement entre 7/5 = 1.4 et 15/13 ∼ 1.15. Sa valeur de 7/5 (quand les modes de vibrations ne sont pas
activés) provient du fait que sa configuration est linéaire et donc similaire à une molécule diatomique. A
haute température, la molécule de dioxyde de carbone a 4 modes de vibration, donc 8 degrés de liberté
en vibrations (sous forme cinétique et potentielle), pour un total de 3 + 2 + 8 = 13 degrés de liberté.

Quant à la molécule d’eau, à des températures ambiantes elle tend vers des valeurs de γ égales à
8/6 = 4/3, ce qui est dû au fait que la molécule d’eau a 3 modes de rotation à cause de sa forme en
V, contrairement à la molécule de dioxyde de carbone qui n’en a que deux (à cause de sa configuration
linéaire). A haute températures, la molécule d’eau a 3 modes de vibrations, donc 6 degrés de liberté, ce
qui lui confère un nombre total de degrés de liberté égal à 3+3+6 = 12, et donc des valeurs de γ égales
à 14/12 = 7/6 ∼ 1.17.



Annexe D

Ecoulements et Débit Massique dans une
Tuyère

Dans cette annexe, nous allons étudier quantitativement le comportement du débit massique dans
une tuyère convergente et une tuyère convergente-divergente.

D.1 Conditions à la sortie d’une tuyère
A la sortie d’une tuyère, l’écoulement se comporte comme un jet libre. En d’autres termes, il y a

séparation de l’écoulement au niveau de la paroi de sortie car l’écoulement ne réussit pas à entreprendre
un changement de direction brusque.

Le milieu ambiant où se déverse le jet (qui peut être l’atmosphère ou le vide) est à une pression qu’on
appelle ambiante, atmosphérique, ou arrière (de l’anglais back pressure). La pression au sein du jet à la
sortie est appelée pression de sortie (exit pressure en anglais).

L’interface entre le jet et le milieu ambiant (qui peut être le vide) porte différent noms, comme surface
(ou couche) de cisaillement, surface libre, ou encore surface de contact (contact surface en anglais).

Figure D.1 – Ecoulement en sortie de tuyère.

Nous ne rentrerons pas dans les détails de la structure complexe de l’écoulement au niveau de cette
interface, mais nous distinguerons deux cas, selon que l’écoulement est subsonique ou supersonique à la
sortie.

Subsonique

En supposant que le milieu ambiant reste globalement inaltéré par la présence du jet, la condition
habituelle au niveau de l’interface est qu’il y ait continuité de la pression

psortie = parrière, (D.1)

qui est la condition standard pour les écoulements incompressibles (jet d’eau dans l’atmosphère).

Supersonique

La condition de continuité de la pression à travers l’interface reste toujours valable, et ainsi, à une
petite distance au delà de la sortie, la pression dans le jet est égale à la pression arrière. Cependant,
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comme l’écoulement est supersonique, la condition de pression juste après la sortie du jet ne peut remonter
l’écoulement, et de ce fait la pression de sortie du jet peut être inférieure, égale, ou supérieure à la pression
arrière.

Si la pression de sortie est égale à la pression arrière, la configuration du jet est identique à celle d’un
écoulement subsonique.

Si la pression de sortie est supérieure à la pression arrière, une onde de détente permet à l’écoulement
de passer d’une région de haute pression à une région de basse pression (voir chapitre sur les écoulements
de Prandtl-Meyer). La tuyère est alors sous-détendue (under-expanded en anglais).

Si la pression de sortie est inférieure à la pression arrière, une onde de choc permet à l’écoulement
de passer d’une région de basse pression à une région de haute pression (voir chapitre sur les ondes de
choc). La tuyère est alors sur-détendue (over-expanded en anglais).

Il va sans dire que la condition où la pression de sortie est égale à la pression arrière est ce que l’on
appelle le point de fonctionnement (ou design operation) de la tuyère.

Figure D.2 – Etat de sortie des tuyères en régime supersonique. De gauche à droite : sur-détente, point
de fonctionnement, sous-détente.

D.2 Débit massique en écoulement isentropique

D.2.1 Débit massique en fonction du nombre de Mach
Nous avons vu dans le chapitre 5 que le débit massique peut s’écrire

ṁ =
p0
a0
AγM

(
1 +

γ − 1

2
M2

)− γ+1
2(γ−1)

, (D.2)

ou de manière équivalente

ṁ =
p0√
rT0

A
√
γM

(
1 +

γ − 1

2
M2

)− γ+1
2(γ−1)

. (D.3)

En particulier, il est à remarquer que le débit massique ne dépend que de
* Conditions de réservoir (p0, T0)
* Nombre de Mach local (M)
* Aire de la section locale (A)

D.2.2 Débit massique en fonction de la pression
Le débit massique

ṁ = ρuA (D.4)

peut être exprimé en fonction de la pression en utilisant l’expression pour la masse volumique (en
écoulement isentropique)

ρ = ρ0

(
p

p0

) 1
γ

, (D.5)
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ainsi que l’expression pour la vitesse (voir discussion sur le tube de Pitot en chapitre 4)

u =

√√√√2γrT0
γ − 1

[
1−

(
p

p0

) γ−1
γ

]
, (D.6)

donnant ainsi

ṁ = ρ0

(
p

p0

) 1
γ

A

√√√√2γrT0
γ − 1

[
1−

(
p

p0

) γ−1
γ

]
(D.7)

ou, en regroupant les termes de pression,

ṁ = ρ0A

√
2γrT0
γ − 1

(
p

p0

) 1
γ

√
1−

(
p

p0

) γ−1
γ

, (D.8)

ou encore

ṁ = A

√
2γ

γ − 1

p0√
rT0

(
p

p0

) 1
γ

√
1−

(
p

p0

) γ−1
γ

. (D.9)

Il est à remarquer que cette relation aurait pu être obtenu directement en explicitant le nombre de Mach
M en fonction de p/p0 à partir de la relation

p0
p

=

(
1 +

γ − 1

2
M2

) γ
γ−1

, (D.10)

et en remplaçant dans la relation du débit en fonction du nombre de Mach, Equation D.3.

D.2.3 Représentation graphique et valeurs soniques
On a ainsi deux relations pour le débit massique, Equation D.3 et Equation D.9, une en fonction du

nombre de Mach local M et une en fonction de la pression locale p. Ces deux relations peuvent être sous
forme adimensionnelle

ṁ
√
rT0

p0A
=
√
γM

(
1 +

γ − 1

2
M2

)− γ+1
2(γ−1)

, (D.11)

ṁ
√
rT0

p0A
=

√
2γ

γ − 1

(
p

p0

) 1
γ

√
1−

(
p

p0

) γ−1
γ

, (D.12)

dont la représentation graphique est donnée sur la Figure D.3.

Figure D.3 – Variation du débit massique avec la pression et le nombre de Mach pour γ = 1.4.

Quand le nombre de Mach est égale à l’unité M = 1 (conditions soniques), on peut vérifier que ces
deux expressions fournissent le même résultat

ṁ∗
√
rT0

p0A∗
=
√
γ

(
γ + 1

2

)− γ+1
2(γ−1)

, (D.13)
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p∗
p0

=

(
γ + 1

2

)− γ
γ−1

. (D.14)

Selon les valeurs de γ, on obtient les valeurs de la table ci-dessous (les valeurs pour la pression ont
déjà été rencontrées dans le chapitre 4)

Monoatomique Diatomique
γ 5/3 = 1.667 7/5 = 1.4 9/7 = 1.286

ṁ∗
√
rT0

p0A∗
0.7262 0.6847 0.6647

p∗
p0

0.4871 0.5283 0.5483

Table D.1 – Débit massique et pression aux conditions soniques

La Figure D.3 présente fournit une image riche en détails.
Le paramètre de l’ordonnée ṁ

√
rT0/p0A ne représente pas le débit massique, mais le débit massique

par unité de surface (de la section de la tuyère), en considérant que les conditions de réservoir soit
constantes. Cette quantité peut donc être examinée de deux manières.

Pour un débit donné (donc ṁ fixe), qui sera constant le long de la tuyère (par conservation de masse),
ce paramètre ṁ

√
rT0/p0A est une indication de la variation de section le long de la tuyère en fonction

de la variation du nombre de Mach M local et de la pression locale p. Ainsi, pour un débit donné, il est
possible de suivre l’évolution du nombre de Mach et de la pression en fonction de la section (en inversant
l’abcisse et l’ordonnée), à condition que l’écoulement soit isentropique.

D’autre part, pour une section donnée de la tuyère (donc A fixe), le paramètre ṁ
√
rT0/p0A est

une indication du débit massique en cette section particulière de la tuyère en fonction du nombre de
Mach local M et la pression locale p/p0. Cette interprétation nous permettra en particulier d’évaluer la
variation du débit en sortie d’une tuyère convergent avec les variations de la pression de sortie.

Les deux courbes de la Figure D.3 présentent toutes deux un maximum, qui, de surcroît, se produit
à un nombre de Mach M = 1 et à une pression correspondant à la valeur dans des conditions soniques
p∗/p0. Pour une valeur de la section donnée, on en conclut que le débit massique est maximum quand la
vitesse de l’écoulement atteint la vitesse du son. Cette propriété sera liée au concept de blocage sonique
(choked flow).

Ces remarques nous permettent maintenant d’examiner en détail l’écoulement dans une tuyère conver-
gente et une tuyère convergent-divergente.

D.3 Ecoulement dans une tuyère convergente

L’écoulement dans une tuyère convergente est engendrée par une pression totale p0 régnant en amont
de la tuyère. La configuration de l’écoulement va dépendre de la pression arrière parrière à la sortie
de la tuyère, que l’on nomme également pression ambiante ou pression en aval (back pressure en langue
anglaise), que l’on dénotera avec l’indice α, donc pα. Cette pression peut varier de la valeur pα = p0 (sans
écoulement) jusqu’au vide (pα = 0), indépendamment des conditions dans le réservoir. En particulier,
dans certaines souffleries supersoniques, la pression en aval de la tuyère peut être réglée arbitrairement
en évacuant la tuyère dans une chambre à pression ajustable. Pour une tuyère de fusée, la pression
arrière représente la pression atmosphérique ambiante, qui peut varier selon l’altitude de la fusée, jusqu’à
atteindre une valeur presque nulle (par rapport à la pression de réservoir) au-delà de la troposphère.

La Figure D.4 illustre les différents points d’opération de la tuyère en fonction des différentes valeurs
de la pression arrière (a, b, c, d). Le graphe du débit massique est considéré en sortie de tuyère, où la
section a une valeur minimale.

Quand la pression arrière a la même valeur que dans le réservoir (cas a), aucun écoulement ne se
produit.
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Figure D.4 – Ecoulement dans une tuyère convergente en fonction de la pression arrière (pour γ = 1.4).

Quand la pression arrière a une valeur située comme dans le cas b, entre le cas a et c, c’est à dire
entre p∗ et p0, un écoulement subsonique se produit dans la tuyère. Dans ce cas, la pression arrière est
égale à la pression en sortie de tuyère. Par exemple, pour pα/p0 = 0.65, les tables isentropiques pour
γ = 1.4 fournissent un nombre de Mach M = 0.81 en sortie de tuyère. Le débit massique a alors une
valeur particulière dépendante des conditions de réservoir et de la valeur de l’aire de la section de sortie
A.

Quand la pression arrière est égale à p∗ (cas c), l’écoulement est sonique en sortie de tuyère (M = 1).
Pour γ = 1.4, on a vu que p∗/p0 = 0.5283 (cette valeur se retrouve dans les tables isentropiques pour
M = 1). En ce point de fonctionnement, le débit massique a atteint sa valeur maximale, qui pour γ = 1.4
est égale à ṁ∗

√
rT0/p0A∗ = 0.6847.

Si la pression arrière est réduite au dessous de cette valeur p∗ (cas d), l’écoulement dans la tuyère
restera inchangé, étant donné que le nombre de Mach maximal dans une tuyère convergente est égal à 1
et celui-ci se produit où la section est minimale, donc au col (sortie de tuyère). La détente se produira
alors à l’extérieur de la tuyère (par des ondes de détentes). En particulier, la pression de sortie de tuyère
restera égale à p∗, et les ondes de détentes (à l’extérieur de la tuyère) permettront à l’écoulement de
rejoindre la valeur de la pression arrière (inférieure à p∗).

Lorsque l’écoulement devient sonique au col, aucune perturbation ne peut remonter dans le convergent.
Par conséquent, l’écoulement dans le convergent ne communique plus avec l’écoulement en aval du col et
n’a aucun moyen de savoir que la pression de sortie continue à diminuer. Physiquement, ce phénomène
est facile à comprendre du fait qu’aucun message (se propageant à la vitesse du son) ne peut remonter
l’écoulement si en un endroit la vitesse est égale à la vitesse du son.

Le débit-masse ne dépend que des conditions régnant dans le réservoir et non pas de la pression arrière
à condition toutefois que l’écoulement soit sonique au col. Ainsi, pour une valeur de p0 constante, le débit-
masse sortant de la tuyère n’augmente pas en baissant la pression arrière (Fig. D.4). Ce phénomène
constitue l’effet de blocage sonique (choked flow) d’un écoulement compressible. La valeur du débit
massique est donné par ṁ∗

√
rT0/p0A∗ = 0.6847 (pour γ = 1.4).

D.4 Tuyère convergente-divergente ou de Laval

L’écoulement dans une tuyère de Laval engendré par une pression totale p0 régnant en amont de la
tuyère se présente comme indiqué sur la Figure D.5 en fonction de la pression variable pα régnant en
aval de la tuyère.

Si pα est suffisamment élevée, l’écoulement demeure subsonique tout le long de la tuyère (cas a et b).
Dans le cas c, le col devient sonique au moment où la pression arrière a une valeur particulière (égale

à celle du cas c). L’écoulement est isentropique tout le long de la tuyère, et en particulier, subsonique. Le
fait que l’écoulement soit subsonique dans la parie divergente est confirmé par la tendance de la pression
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Figure D.5 – Ecoulement dans une tuyère convergente-divergente en fonction de la pression arrière.
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(qui augmente) dans la partie divergente, qui suit la tendance de la section (qui augmente également).
Dans ce cas, le débit massique a atteint sa valeur maximale, qui peut être déterminée par sa valeur au
col (le débit massique est constant le long de la tuyère). Ainsi, pour γ = 1.4, la valeur du débit massique
est donnée par ṁ∗

√
rT0/p0A∗ = 0.6847, où A∗ représente la valeur de la section au col de la tuyère de

Laval.
Comme l’écoulement a atteint la valeur sonique au col (M = 1), toute réduction de pression en

aval de ce col ne produira plus de changement dans la partie convergente. Il y a blocage sonique : le
débit massique a atteint sa valeur maximale et l’écoulement dans la partie convergente (distributions de
pression, vitesse etc.) restera inchangé.

Les cas d et e étant mis à l’écart pour l’instant, quand la pression arrière atteint une valeur égale à
celle du cas f , l’écoulement (isentropique) est alors supersonique dans la partie divergente, tout en restant
subsonique dans la partie convergente et sonique au col. Le cas f est appelé point de fonctionnement
(design operation) car la globalité de l’écoulement dans la tuyère et en sortie est isentropique et sa vitesse
de sortie est maximale (un des objectifs des tuyères, en particulier celles des propulseurs supersoniques).

Entre les cas c et f , l’écoulement est caractérisé par la présence d’ondes de choc dans la tuyère et à la
sortie. Ce phénomène sera examiné dans des chapitres ultérieurs. Pour des pressions arrières inférieures
à celles du cas f (cas g par exemple), des ondes de détente se forment en sortie (ce phénomène sera
également étudié dans des chapitres ultérieurs.

On remarquera qu’entre les cas c et g, le débit massique ne change pas, et pour γ = 1.4, cette valeur
est donnée par ṁ∗

√
rT0/p0A∗ = 0.6847, où A∗ représente la valeur de la section au col de la tuyère de

Laval.
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Annexe E

Ondes de détentes sur les profils
aérodynamiques et dans les tuyères

E.1 Ecoulements supersoniques autours de profils
Une illustration classique des écoulements de Prandtl-Meyer est l’étude d’écoulements supersoniques

autours de profils. Les grandeurs physiques intéressantes associées à ce type de géométrie, sauf les effets
visqueux, peuvent être calculées à partir de la théorie précédente, en particulier la portance, la trainée
(non visqueuse), le centre de pression et les moments. Dans ce paragraphe, nous nous intéresserons
essentiellement aux forces de portance et de trainée.

E.1.1 Portance et trainée

Figure E.1 – Profil d’aile

Considérons un écoulement autour d’un profil avec un nombre de Mach amont de M∞ = u∞/a∞. On
définit la corde du profil c, longueur entre le bord d’attaque et le bord de fuite du profil. On suppose que
la corde du profil est inclinée d’un angle α par rapport à l’écoulement incident. Par définition, la portance
FL (où l’indice L rappelle le terme angalis lift pour portance) est la composante de la force aérodynamique
appliquée sur le profil et dirigée perpendiculairement à la vitesse u∞ de l’écoulement amont. La trainée
FD (où l’indice D rappelle le terme anglais drag pour traînée) est la force de résistance à l’avancement
selon la direction du mouvement. On définit alors le coefficient adimensionnel de portance par unité
d’envergure

cL =
FL

1
2ρ∞u

2
∞c

=
FL

γ
2 p∞M

2
∞c

, (E.1)

où la dernière égalité est obtenue par définition du nombre de Mach en utilisant la relation pour la vitesse
du son ainsi que l’équation d’état. De la même manière, le coefficient de traînée est donné par

cD =
FD

1
2ρ∞u

2
∞c

=
FD

γ
2 p∞M

2
∞c

. (E.2)

En aérodynamique, les coefficients par unité d’envergure sont généralement dénotés par une lettre minus-
cule (cL, cD) alors que les coefficients pour les profils complets sont représentés par des lettres majuscules
(CL, CD).

Nous verrons que la traînée qui apparaît en écoulement compressible n’est pas un phénomène vis-
queux mais lié aux phénomènes de propagation d’ondes : on l’appelle ainsi la traînée d’onde et résulte
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d’une distribution de pression asymétrique sur le profil. Elle n’existe donc que dans les écoulements com-
pressibles et seulement si la portance est non nulle. En fait, on l’appelle aussi traînée due à la portance.
Il ne faut pourtant pas confondre ce phénomène avec celui de la traînée induite rencontrée dans les écou-
lements tridimensionnels de fluides incompressibles, phénomène qui existe aussi pour les écoulements
compressibles tridimensionnels.

E.1.2 Ecoulement autour d’une plaque plane

Figure E.2 – Plaque plane dans un écoulement supersonique

Considérons une plaque plane, d’envergure infinie, inclinée d’un angle α par rapport à la vitesse u∞
amont d’un écoulement supersonique de nombre de Mach M∞. On suppose que l’angle d’incidence est
suffisamment petit pour que l’écoulement reste supersonique de part et d’autre du profil. A l’intrados,
partie inférieure de la plaque, l’écoulement s’ajuste après une rotation d’angle α au moyen d’une onde de
choc oblique (solution faible). L’angle α doit être inférieur à l’angle de déviation maximum correspondant
au nombre de Mach M∞ pour un choc attaché. De même, sur l’extrados, partie supérieure du profil,
l’écoulement s’adapte après une détente d’un angle α due à une détente de Prandtl-Meyer. L’évolution
de l’écoulement se présente selon la figure E.2.

On a ainsi, sur l’extrados, une onde de détente centrée au bord d’attaque suivie d’une onde de choc
attachée au bord de fuite. Sur l’intrados le fluide traverse d’abord l’onde de choc oblique attachée au bord
d’attaque et ensuite une onde de détente centrée au bord de fuite. Les déviations étant connues à travers
les chocs et les ondes de détente, comme on suppose connues les conditions de l’écoulement amont, il
est facile à partir des relations des chocs obliques et les relations de Prandtl-Meyer de déterminer les
conditions de l’écoulement en 1 et 2 et en particulier les nombres de Mach M1 et M2, ainsi que les
pressions p1 et p2.

Sur l’extrados (intrados), la pression sur la plaque est uniforme et égale à p2 (p1). Il en résulte une
force F perpendiculaire à la plaque. Comme p2 < p1, il y aura une force de portance positive et une
trainée d’onde sur la plaque respectivement données par

FL = (p1 − p2) c · cosα, (E.3)

FD = (p1 − p2) c · sinα, (E.4)

dont on déduit les coefficients de portance et de traînée

cL =
2

γM2
∞

(
p1
p∞
− p2
p∞

)
cosα (E.5)

cD = cL tanα. (E.6)

Il suffit donc de déterminer les rapport de pression p1/p∞ et p2/p∞ qui ne dépendent que de γ et du
nombre de Mach M∞ pour calculer la portance et la traînée d’onde. Si l’angle α est nul p1 = p2 et par
suite la portance est nulle. Si α ̸= 0 comme la portance n’est pas nulle, la traînée d’onde existe et ne
dépend que de la portance.

Une remarque importante concerne l’écoulement en aval du profil, dans les régions 3 et 4. Tout
d’abord, les conditions dans ces régions n’influencent pas la force agissant sur le profil (comme on l’a vu).
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D’autre part, les écoulements en région 3 et en 4, qui se doivent d’être parallèles, ne le sont cependant
pas avec l’écoulement en amont du profil. La condition que la pression p3 soit égale à p4 (et que les
écoulements soit parallèles) permet de résoudre le problème et déterminer l’angle de l’écoulement.

E.1.3 Ecoulement autour d’un profil en losange

Considérons maintenant un profil d’épaisseur non nulle de corde c. Pour simplifier, on prendra un
profil symétrique en forme de losange, formé de quatre cotés identiques de longueur c/2 cos δ, où δ est le
demi angle d’ouverture du losange. On supposera que l’angle d’attaque α est nul.

Figure E.3 – Profil en losange aligné avec l’écoulement

Par conséquent, il n’y a pas de portance et la trainée d’onde due à la portance est aussi nulle. Pourtant
la trainée n’est pas nulle. En effet, p1 = p2 > p3 = p4. Calculons en effet, la trainée due à chaque plaque
plane formant le corps. En considérant la symmétrie de l’écoulement à angle d’incidence nul, nous avons

FD,1 = FD,2 = p1
c/2

cos δ
sin δ, (E.7)

ainsi que

FD,3 = FD,4 = −p3
c/2

cos δ
sin δ, (E.8)

et par conséquent
FD = FD,1 + FD,2 + FD,3 + FD,4 = c (p1 − p3) tan δ. (E.9)

Puis, on obtient le coefficient de trainée

cD =
2

γM2
∞

(
p1
p∞
− p3
p∞

)
tan δ. (E.10)

Le rapport p1
p∞

est le rapport de pression statique à travers le choc oblique tandis que le rapport p3
p1

est le rapport de pression à travers la détente de Prandtl-Meyer. La traînée est due ici uniquement à
l’épaisseur non nulle du profil, qui intervient dans la relation par l’intermédiaire de l’angle du dièdre δ.
C’est la trainée d’onde due à l’épaisseur.

E.2 Ecoulements supersoniques en sortie de tuyère

E.2.1 Ecoulements en sortie

La tuyère d’un avion supersonique ou d’une fusée est dessinée de manière à fonctionner sans choc (ni
dans la tuyère ni dans le sillage) pour une certaine altitude au dessus du niveau de la mer. Cependant,
selon l’altitude ou la configuration de la tuyère, différentes morphologie de l’écoulement peuvent se
présenter.

Or, en particulier au niveau de la mer, la tuyère est sur-détendue (over-expanded), c’est-à-dire que la
pression à la sortie des gaz est plus faible que la pression ambiante (ou arrière). Cela a pour conséquence la
génération d’un choc (généralement oblique) à la sortie de la tuyère. Pour atteindre la pression ambiante,
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Figure E.4 – Morphologie de l’écoulement en sortie de tuyère

le gaz subit une compression lorsqu’il traverse le choc. Il subit alors une déviation vers l’axe de symétrie
de la tuyère (cas entre e et f sur la Figure E.4).

En altitude, la pression en sortie est généralement plus grande que la pression ambiante : la tuyère
est alors sous-détendue (under-expanded). Afin de permettre à l’écoulement de se retrouver en équilibre
avec la pression ambiante, une onde de détente (Prandtl-Meyer) se forme en sortie et permet de détendre
l’écoulement (cas g sur la Figure E.4). L’écoulement est alors dévié ves l’extérieur, élargissant ainsi la
taille du sillage. Cette morphologie est très commune sur les clichés de fusées prises à très hautes altitudes.

Figure E.5 – Sillage d’une tuyère sous-détendue (à gauche, pour la tuyère solide de la Navette Spatiale
en haute altitude) par rapport au sillage en basse altitude (à droite, qui peut être sur-détendue ou au
point de fonctionnement)

E.2.2 Sillage des tuyères

Les sillages des tuyères supersoniques peuvent présenter des motifs très esthétiques. Ces sillages
résultent d’une réflexion des ondes de choc et de détente sur l’axe du jet ainsi que le long de la surface
libre ou couche de cisaillement (shear layer), qui correspond à l’interface entre le jet et le milieu ambiant.
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Tuyère sur-détendue (over-expanded) Pour une tuyère sur-détendue, si une onde de choc apparaît
sous forme de choc oblique, cette onde de choc converge vers l’axe du jet. L’onde de choc sera réfléchie,
soit normalement soit par création d’un disque (ou choc) de Mach (Figure E.6), selon les conditions de
l’écoulement, comme étudié au Chapitre sur les ondes de chocs obliques.

Figure E.6 – Tuyère sur-détendue (over-expanded), avec pression de sortie égale à 0.7 bar, inférieure à
la pression arrière ou ambiante égale à 1 bar (Swiss Propulsion Laboratory, www.spl.ch).

Le choc réfléchi interagit alors avec la surface libre (Figure E.6). Comme l’écoulement en amont de
ce choc oblique (zone 2) est à pression ambiante, l’écoulement en aval (zone 3) sera à une pression plus
élevée. Afin de rejoindre la pression ambiante en zone 4, l’écoulement en zone 3 doit être détendu : cela
peut se faire à travers une détente de Prandtl-Meyer. De ce fait, une onde de choc se réfléchit sur une
couche de cisaillement en une onde de détente centrée.

L’onde de détente interagit ensuite avec les ondes de détente provenant des régions opposées (en
2D ou 3D) : l’interaction des ondes de détentes donne naissance à une région appelée non-simple (par
opposition à une région simple ne faisant intervenir qu’un seul faisceau d’ondes de détente). La méthode
des caractéristiques permet de résoudre ce genre d’écoulement.

Figure E.7 – Sillage de tuyère sur-détendue (Swiss Propulsion Laboratory, www.spl.ch).

Après réflexion de ces ondes de détente sur l’axe, elles interagissent alors avec la couche de cisaillement.
Comme l’écoulement en amont de ces ondes de détente (zone 4) est à pression ambiante, il sera détendu



150 Ecoulements supersoniques en sortie de tuyère

en traversant ces ondes (zone 5) afin que l’écoulement (en zone 5) soit parallèle à l’axe (Figure E.7). Afin
que l’écoulement puisse revenir à pression ambiante en zone 6, il doit être comprimé : les ondes de détente
doivent donc se réfléchir sur la couche de cisaillement en un faisceau de Prandtl-Meyer de compression.
La convergence de ces ondes de compression conduit généralement à une onde de choc oblique (Figure
E.7).

Le procédé se répète alors à partir de la réflexion de ces ondes de choc obliques sur l’axe.

Tuyère sous-détendue (underexpanded) Pour une tuyère sous-détendue, l’écoulement en sortie de
tuyère est d’abord dévié vers l’extérieur par un faisceau de Prandtl-Meyer permettant à l’écoulement
d’être détendu vers la pression ambiante (schéma du haut de la Figure E.8).

Comme dans le cas de la tuyère sur-détendue, ces ondes de détentes se rejoignent sur l’axe et sont
redirigées vers la surface libre. Comme l’écoulement en amont de ces ondes réfléchies est à pression
ambiante (zone 2), l’écoulement sera détendu en traversant ces ondes, pour finalement générer un écou-
lement parallèle à l’axe en zone 3. Il devra donc être recomprimé vers la pression ambiante (zone 4) en
traversant un faisceau de Prandtl-Meyer de compression (résultant de la réflexion des ondes de détentes
sur la surface libre). Ce faisceau de compression devient une onde de choc oblique convergeant vers l’axe
du jet.

Le procédé devient alors identique à celui de la tuyère sur-détendue. Il n’y a finalement qu’un dé-
phasage entre les deux formes d’écoulements (Figure E.8). Dans les détails, les écoulements ne sont pas
identiques de par la manière dont ils sont engendrés en sortie de tuyère. En particulier, le sillage de la
tuyère sous-détendue sera globalement plus large que celui de la tuyère sur-détendue.

Figure E.8 – Sillage de tuyère sous-détendue (haut), et comparaison avec le sillage d’une tuyère sur-
détendue (bas).
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Formulaire
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n : nombre d’atomes/molécules par unité de volume [m−3]
k : constante de Boltzmann 1.3806488 · 10−23 [J ·K−1]
R = kNA : constante des gaz parfaits 8.3144621 [J ·K−1 ·mol−1]
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µ = sin−1 1

M
(F.42)

u2

2
+

∫
1

ρ
dp = C (F.43)

Γ =
a4

2v3

(
∂2v

∂p2

)
s

(F.44)

du

u
=

dM/M

1 + (Γ− 1)M2
(F.45)

u2

2
+

γ

γ − 1

p

ρ
= C (F.46)
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Fluide Γ
Gas Parfait (γ + 1)/2

Liquide de Tait (k + 1)/2
Eau 4.4

Ethanol 6.4

Table F.1 – Valeurs de la dérivée fondamentale Γ à 1 Atm et 293.15 K.

cpT +
u2

2
= cpT0 (F.47)

T0
T

= 1 +
γ − 1

2

(u
a

)2
= 1 +

γ − 1

2
M2 (F.48)

p0
p

=

(
1 +

γ − 1

2
M2

) γ
γ−1

(F.49)

ρ0
ρ

=

(
1 +

γ − 1

2
M2

) 1
γ−1

(F.50)

u2 − a2∗
2

=
a2∗ − a2

γ − 1
(F.51)

T∗
T0

=
2

γ + 1
,

p∗
p0

=

(
2

γ + 1

) γ
γ−1

,
ρ∗
ρ0

=

(
2

γ + 1

) 1
γ−1

(F.52)

Monoatomique Diatomique
γ 5/3 = 1.667 7/5 = 1.4 9/7 = 1.286

T∗/T0 0.7499 0.8333 0.8750
p∗/p0 0.4871 0.5283 0.5483
ρ∗/ρ0 0.6495 0.6339 0.6267

M∗ =
u

a∗
(F.53)

M2
∗ =

(γ + 1)M2

2 + (γ − 1)M2
(F.54)

dρ

ρ
= −M2 du

u
(F.55)

dA

A
=
(
M2 − 1

) du
u

(F.56)

dA

A
= −M

2 − 1

γM2

dp

p
(F.57)

dA

A
=

M2 − 1

1 +
γ − 1

2
M2

dM

M
(F.58)

da

a
= −γ − 1

2
M2 du

u
(F.59)

du

u
=

1

1 +
γ − 1

2
M2

dM

M
. (F.60)
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A

A∗
=

1

M

[
2

γ + 1

(
1 +

γ − 1

2
M2

)](γ+1)/2(γ−1)

(F.61)

ṁ = ρuA (F.62)

a0ṁ

p0A
= γM

(
1 +

γ − 1

2
M2

)− γ+1
2(γ−1)

. (F.63)

ṁ

ρ0a0A
=M

(
1 +

γ − 1

2
M2

)− γ+1
2(γ−1)

. (F.64)

ṁ = A

√
2γ

γ − 1

p0√
rT0

(
p

p0

) 1
γ

√
1−

(
p

p0

) γ−1
γ

(F.65)

ṁ
√
rT0

p0A
=
√
γM

(
1 +

γ − 1

2
M2

)− γ+1
2(γ−1)

(F.66)

ṁ
√
rT0

p0A
=

√
2γ

γ − 1

(
p

p0

) 1
γ

√
1−

(
p

p0

) γ−1
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(F.67)

ṁ∗
√
rT0

p0A∗
=
√
γ

(
γ + 1

2

)− γ+1
2(γ−1)

(F.68)

p∗
p0

=

(
γ + 1

2

)− γ
γ−1

(F.69)

Monoatomique Diatomique
γ 5/3 = 1.667 7/5 = 1.4 9/7 = 1.286

ṁ∗
√
rT0

p0A∗
0.7262 0.6847 0.6647

p∗
p0

0.4871 0.5283 0.5483

dp = ρadu (F.70)

∂u

∂t
+ (u+ a)

∂u

∂x
= 0 (F.71)

dx

dt
= u+ a = a0 +

γ + 1

2
u (F.72)

ρ1wn,1 = ρ2wn,2 (F.73)

p1 + ρ1w
2
n,1 = p2 + ρ2w

2
n,2 (F.74)

h1 +
w2
n,1

2
= h2 +

w2
n,2

2
(F.75)
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wn,1wn,2 =
[p]

[ρ]
(F.76)

j = ρ1wn,1 = ρ2wn,2 (F.77)

j2 = − [p]

[v]
(F.78)

Mn,1 ≡
wn,1
a1

(F.79)

Π =
[p]

ρ1a21
= −Mn,1

[wn]

a1
= −M2

n,1

[v]

v1
(F.80)

[wn]
2
= − [p] [v] (F.81)

h2 − h1 =
p2 − p1

2

(
1

ρ1
+

1

ρ2

)
(F.82)

T1 [s]

a21
=

1

6
Γ1Π

3 +O
(
Π4
)

(F.83)

M2
n,2 =

1 + γ−1
2 M2

n,1

γM2
n,1 −

γ−1
2

(F.84)

p2
p1

=
2

γ + 1

(
γM2

n,1 −
γ − 1

2

)
= 1 +

2γ

γ + 1

(
M2
n,1 − 1

)
(F.85)

T2
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=
h2
h1

=

(
2

γ + 1

)2
1

M2
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(
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γ − 1

2
M2
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)(
γM2
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2
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(F.86)

ρ2
ρ1

=
wn,1
wn,2

=
γ + 1

2

M2
n,1

1 + γ−1
2 M2

n,1

(F.87)

p0,2
p0,1

=
ρ0,2
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=

(
γ+1
2

) γ+1
γ−1 M

2γ
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n,1(
1 + γ−1

2 M2
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) γ
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γM2
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2

) 1
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(F.88)

s2 − s1 = s0,2 − s0,1 = cp ln

[
T0,2
T0,1

]
− r ln

[
p0,2
p0,1

]
= −r ln

[
p0,2
p0,1

]
(F.89)

p0,2
p0,1

= exp−
(s2−s1)

r . (F.90)

s2 − s1 = cv ln

{[
1 +

2γ

γ + 1

(
M2
n,1 − 1

)] [
1− 2

γ + 1

M2
n,1 − 1

M2
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]γ}
(F.91)

p2
p1

=
1 + ρ1

ρ2
− 2γ

γ−1

1− γ+1
γ−1

ρ1
ρ2

= f

(
ρ1
ρ2

)
(F.92)

wn,1wn,2 = a2∗ (F.93)

p0,1A∗,1 = p0,2A∗,2 (F.94)

Mn,1 =M1 sin θ (F.95)
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Mn,2 =M2 sin(θ − δ) (F.96)

p2
p1

=
2

γ + 1

(
γM2

1 sin2 θ − γ − 1

2

)
= 1 +

2γ

γ + 1

(
M2
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(F.97)
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2

M2
1 sin2 θ

1 +
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2
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1 sin2 θ
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=
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2
M2

1 sin2 θ
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(F.99)

s2 − s1 = cv ln
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2γ

γ + 1

(
M2
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)] [

1− 2
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, (F.100)

M2
2 =

1

sin2(θ − δ)

1 +
γ − 1

2
M2

1 sin2 θ

γM2
1 sin2 θ − γ − 1

2

(F.101)

tan δ = 2 cot θ
M2

1 sin2 θ − 1

M2
1 (γ + cos 2θ) + 2

(F.102)

dδ = −
√
M2 − 1

dw

w
(F.103)

ν(M) ≡
∫ M

1

√
M2 − 1

1 + γ−1
2 M2

dM

M
(F.104)

ν(M) =

√
γ + 1

γ − 1
arctan

√
γ − 1

γ + 1
(M2 − 1)− arctan

√
M2 − 1 (F.105)

ν(M2) = ν(M1)− δ (F.106)

cL =
FL

1
2ρ∞u

2
∞c

=
FL

γ
2 p∞M

2
∞c

(F.107)

cD =
FD

1
2ρ∞u

2
∞c

=
FD

γ
2 p∞M

2
∞c

(F.108)

FL = (p1 − p2) c · cosα (F.109)

FD = (p1 − p2) c · sinα (F.110)

cL =
2

γM2
∞

(
p1
p∞
− p2
p∞

)
cosα (F.111)

cD = cL tanα (F.112)

FD,1 = FD,2 = p1
c/2

cos δ
sin δ (F.113)

FD,3 = FD,4 = −p3
c/2

cos δ
sin δ (F.114)

FD = FD,1 + FD,2 + FD,3 + FD,4 = c (p1 − p3) tan δ (F.115)
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cD =
2

γM2
∞

(
p1
p∞
− p3
p∞

)
tan δ (F.116)
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=
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=
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= − 1
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=
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∂ρ
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+
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∂ℓ
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1

u
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−∂u
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= 0 (F.121)
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= 0 (F.122)
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∂
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+ tanµ

∂

∂n

)
(ν − ϑ) = 0 (F.123)

(
∂
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− tanµ

∂

∂n

)
(ν + ϑ) = 0 (F.124)

d

dm− (ν − ϑ) = 0 (F.125)

d

dm+
(ν + ϑ) = 0 (F.126)


