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Chapitre 1

Introduction

1.1 Compressibilité d’un fluide

Selon le dictionnaire Larousse, la compressibilité est la ‘propriété qu’ont les corps de diminuer de
volume sous l'effet d’une augmentation de pression.” En mécanique des fluides, la compressibilité est un
paramétre caractérisant la variabilité de la masse volumique (ou densité) ou de son inverse, le volume
spécifique (volume par unité de masse). Pour une particule de fluide, qui par définition a une masse
fixe, un changement de masse volumique correspond donc bien & un changement de volume. De ce fait,
il faudrait préférablement parler d’écoulement isochore (masse volumique constante) et isovolumique
(volume spécifique constant), ou non-isochore et non-isovolumique.

Le langage courant au fil du temps a forcé le choix sur le terme compressible au lieu de non-isochore.

Pour un fluide simple au repos (en condition hydrostatique), la masse volumique ne dépend que de
deux autres variables thermodynamiques (le Chapitre 2 sur les Eléments de Thermodynamique établit
la définition d’un systéme simple, pour lequel toute variable d’état thermodynamique n’est fonction que
de deux autres variables d’état).

Il est possible de choisir de la pression p et la température T' comme variables indépendantes. Ainsi
toute variation infinitésimale de masse volumique p ou de volume spécifique v = 1/p par rapport a sa
valeur d’équilibre peut s’écrire :

dp dv dp dT
?2—7:apo—/deT:(O‘T'p);_(ﬁp'T)? (1.1)
ol a,, est le coefficient de compressibilité isotherme (& température constante) et /3, le coefficient d’ex-
pansion ou de dilatation thermique isobare :
1 (0p 1 [ 0v 1 (0p 1/ 0v
b)), s ), e
p\Op/ v\Op/ p@Tpvan
L’inverse de ., est dénoté module d’élasticité isotherme (en anglais, isothermal bulk modulus) :
1
Kr = (1.3)
Qp

Pour deux fluides classiques, l'air et I'eau, les valeurs des coefficients a pression et température
ambiantes prennent les valeurs suivantes :

Coeflicient Name Air Eau
Qr - Po Compressibilité isotherme 1 4.6 x107°
Bp - To Dilatation thermique 1 0.061

TABLE 1.1 — Compressibilité de lair et I'eau & Ty = 293 K et pp = 1 atm (Sherman F. S., Viscous flow,
McGraw-Hill, 1990).

La variation de volume ou de masse volumique n’est donc pas seulement le résultat d’une variation de
pression comme le sous entend le mot compressibilité. La variation de volume peut également intervenir
a cause d’une variation de température (comme dans un thermométre) ou tout autre variable d’état
comme Uentropie, 'enthalpie, et I’énergie interne (cf Chapitre 2). Tout fluide est donc compressible. Une
variation de la pression et/ou de la température engendre un changement de masse volumique. Pour
les liquides, la variation de pression requise pour atteindre un certain pourcentage de variation de la
masse volumique est plus élevée que pour un gaz. Cependant, les phénomeénes physiques associés a la
compressibilité sont les mémes, quel que soit le fluide, sous forme liquide ou gazeuse.
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1.2 Compressibilité et mouvement d’un fluide

La compressibilité d’un fluide intervient en hydrostatique, comme pour le cas de l'air dans un pneu.
La masse volumique de ’eau des océans varie avec la profondeur, quoique trés faiblement, tandis qu’a
I'opposé la masse volumique de l'air de ’atmosphére peut varier sur plusieurs ordres de grandeurs avec
Paltitude.

Ce cours porte sur la compressibilité associée au mouvement de fluides.

Dans le cas d’ondes acoustiques, les variations de masse volumique sont trés faibles. Cependant, ces
variations de masse volumique infinitésimales sont la clé pour la propagation de ces ondes sonores. A
ces variations périodiques de masse volumique sont associés des oscillations périodiques de particules de
fluide autour d’une position fixe, sans qu’il y ait un net déplacement du fluide. La vitesse de déplacement
du fluide au sein de l'onde est trés inférieure a la vitesse de propagation a de l'onde.

Pour les écoulements (avec un transport net de fluide), 'importance de la compressibilité dépend
de plusieurs paramétres. Dans certains cas, comme pour I’écoulement de I’air autour d’une voiture, les
petites variations de masse volumique n’ont pas d’influence sur ’écoulement. L’écoulement est alors dit
incompressible. Quand les variations de masse volumique influent sur I’écoulement, on le dit compressible.

Des variations de température, et donc de la masse volumique, peuvent engendrer un mouvement
de fluide dans un champ gravitationnel. Ces phénoménes dits de convection sont associés & des vitesses
d’écoulements aussi bien faibles (eau chauffée dans une casserole) qu’élevées (ouragans dans ’atmo-
sphére).

Méme en ’absence de champs de forces externes, la compressibilité d’un écoulement peut étre in-
fluente, selon sa vitesse u par rapport a la vitesse a des ondes acoustiques. Ce rapport est appelé nombre
de Mach et dénoté M :

M = g (1.4)

Sans l'effet de forces externes, ’écoulement est incompressible pour M < 0.3, et compressible pour
M Z 0.3. En particulier, pour 0.3 < M < 1, il est subsonique, pour M ~ 1 transonique, pour M > 1
supersonique, et pour M >> 1 hypersonique. Une grande variété de phénomeénes (ondes de chocs, par
exemple) peuvent apparaitre dans un écoulement selon la valeur du nombre de Mach.

Ce cours se focalisera sur les ondes acoustiques et les écoulements & grand nombre de Mach, qui ont
pour dénominateur commun la vitesse du son (Thompson, 1972).

1.3 Outils pour ’étude de la compressibilité au sein des ondes et
des écoulements

Le fluide peut étre représenté par ses constituants (atomes et molécules). Des équations de physique et
chimie statistiques comme celles de Boltzmann sont alors nécessaires pour la description macroscopique
du fluide. Pour des situations de gaz raréfiés (faible densité, comme pour la rentrée atmosphérique) ou a
I’échelle nanométrique, des simulations au niveau moléculaire sont envisageables.

Dans ce cours, I’hypothése est faite d’un milieu continu. L’écoulement du fluide peut alors étre décrit
par des modéles de milieux continus, comme les équations de Navier-Stokes.

Si la masse volumique reste constante, il ne peut y avoir d’ondes acoustiques, et ’écoulement du
fluide est dit incompressible. L’écoulement peut étre alors décrit par ’équation de conservation de la
masse et les équations de conservation de la quantité de mouvement. La pression varie, mais la masse
volumique peut étre considérée comme constante dans les équations. Un exemple classique est celui
de I’écoulement de 1’eau. Pour un gaz ou les variations de pression sont du méme ordre de grandeur
que les variations de masse volumique (en particulier pour les gaz parfaits), comment est-il possible de
considérer I’écoulement comme incompressible (c’est & dire sans variations de masses volumique malgré
des variations de pression) ? De maniére analogue, jusqu’a quelle vitesse ’écoulement de leau peut-il
étre considéré comme incompressible 7

Pour les ondes acoustiques et les écoulements compressibles, une équation de conservation supplémen-
taire est nécessaire puisque la masse volumique intervient comme une nouvelle variable. Cette équation
est obtenue en appliquant la conservation de 1’énergie aux particules de fluide. D’autres équations dites
constitutives sont nécessaires, car ’énergie doit étre exprimée en fonction de variables d’état mesurables
comme la température et la pression.



1.4 Structure du cours

Le Chapitre 2 introduit quelques notions de thermodynamique fondamentales pour le développement
de la théorie des écoulements compressibles.

Le Chapitre 3 établit les équations de mécanique des fluides nécessaires a 1’étude des écoulements
compressibles sont présentées.

Le Chapitre 4 présente la théorie des écoulements isentropes permanents. Cette théorie est appliquée
au Chapitre 5 pour 'analyse de I’écoulement quasi-monodimensionnel permanent de gaz parfaits dans
les tuyéres.

Le Chapitre 6 est dédié a une introduction sur les ondes de choc et de détente.

Le Chapitre 7 traite de maniére plus détaillée les ondes de choc droites, tandis que le Chapitre 8
présente la théorie des ondes de chocs obliques.

Le Chapitre 9 décrit les écoulements de Prantl-Meyer, permettant des compressions et des détentes
isentropes.

Le Chapitre 10 présente une introduction aux écoulements bidimensionnels par 'intermédiaire de la
méthode des caractéristiques.

Onde de choc droite

Chap 7
u u u
M=251 < | <
a \
u
_‘
a<u <u

n

Onde de Mach

= onde acoustique

= caractéristique de Riemann
= écoulement de Prandtl-Meyer u,=a
= écoulement supersonique isentrope

Chap 4,5,8,9, 10

FIGURE 1.1 — Ecoulement autour d’un corps sphérique se déplagant supersoniquement
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Chapitre 2

Eléments de thermodynamique

Ce Chapitre est un bref rappel de quelques notions de thermodynamique, qui seront nécessaires pour
I’étude des écoulements compressibles. Les ouvrages dans la bibliographie permettent de compléter le
contenu de ce Chapitre (Borel and Favrat, 2005; Borgnakke and Sonntag, 2019; Cengel et al., 2019;
Moran et al., 2019).

2.1 Premier principe de la thermodynamique

2.1.1 Variables thermodynamiques

La thermodynamique est décrite par les variables d’état et les grandeurs de parcours, ainsi que les
lois qui les relient.

Variable d’état Une variable d’état (‘state function’) est une quantité qui peut étre mesurée (ou
évaluée, si la loi est connue) en un point et en un instant donnés. Le nom dérive du verbe étre, et décrit
donc la ‘maniére d’étre d’un corps’ (dictionnaire Le Robert). Des exemples de variables d’état pour un
fluide sont la pression p, la température T, et la masse volumique (ou densité) p.

Une propriété fondamentale d’une variable d’état est que son intégrale entre deux états distincts 1 et
2 du systéme ne dépend pas de la transformation entre ces états mais uniquement des états eux mémes,
soient les états initial et final de la transformation. En particulier une variable d’état v a pour propriété :

/12dw:wz—w1,

qu/):O,

ou le symbole d indique une différentielle totale ou exacte, parfois aussi appelée forme ou 1-forme diffé-
rentielle ou exacte.

(2.1)

Grandeur de parcours Une grandeur de parcours (‘path function’) est une quantité qui dépend de
I’histoire du systéme et non pas de son état actuel uniquement. Elle ne donne aucune information directe
sur ’état actuel du systéme.

Pour une grandeur de parcours ¢, les relations (2.1) ne sont pas vérifiées et s’écrivent cette fois sous
la forme

2
/16¢¢¢2—¢1,

foo 0,

ot le symbole § est distinct du symbole d, car il n’est pas une différentielle totale/exacte. Ce symbole
est parfois représenté comme d ou tout symplement d si la quantité est bien comprise comme grandeur
de parcours (Liepmann and Roshko, 1957).

(2.2)

Pour illustrer le concept de variable d’état et de grandeur de parcours, ’exemple de ’alpiniste gra-
vissant une montagne est couramment utilisé (Borel and Favrat, 2005). La variable d’état z (altitude)
ne dépend que de sa position actuelle alors que le chemin qu’il a suivi pour rejoindre deux points de son
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Montagne

FIGURE 2.1 — Variable d’état (altitude z) et grandeur de parcours (longueur du chemin parcouru [)
(Borel and Favrat, 2005).

ascension est quelconque. Le dénivelé zo — 21 est indépendant du chemin parcouru, alors que la distance
parcourue ! (grandeur de parcours) dépend du chemin emprunté par l'alpiniste. De plus, si 'alpiniste
revient & sa position de départ, la différence d’altitude est nulle alors que le chemin suivi est de longueur
non nulle, illustrant ainsi les propriétés (2.1) et (2.2).

Systéme simple Un systéme est dit simple si et si seulement toute variable d’état le décrivant est
entiérement définie par sa composition chimique, sa masse m, et deux autres variables d’état indépen-
dantes.

Un systéme monophasique, fermé, dont la composition chimique et la masse m sont connues, en
équilibre thermique et mécanique, est généralement simple.

Par conséquent, si 11, ¥, et 13 sont des variables d’état indépendantes, un systéme simple permet
d’écrire :

’1/11 - 7/11(1/)271/)3),

e oy (2.3)
e = (w)w iz (aw)d 3.

2.1.2 Formulation du premier principe

Une particule de fluide est par définition un systéme fermé. Un systéme fermé implique que sa masse
est constante, et qu’il n’y a donc pas de transfert de masse a travers la surface délimitant le systéme.
Les transferts d’énergie (conduction, rayonnement et énergie mécanique) sont autorisés. La particule est
supposée étre chimiquement inerte. D’apreés le premier principe, la somme de 1’énergie fournie sous forme
de chaleur §Q et de travail §W & une masse m de fluide est égale a la variation de son énergie totale
dEt .

dE, =6Q + oW (2.4)

Comme la masse d’une une particule de fluide est invariante par définition, il est possible de normaliser

I’équation par la masse du systéme et utiliser des symboles en lettres minuscules pour représenter des
quantités massiques (par unité de masse), selon la Figure 2.2 :

de; = 0q + dw (2.5)

6W 6
\ systeme — q
matériel
masse m1 = cste

FIGURE 2.2 — Particule de fluide considérée comme un systéme fermé de masse constante et chimiquement
inerte.
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Le premier principe exprimé pour la particule de fluide de masse fixe s’écrit alors sous la forme :
der = de + decin + depor = 0q + dw, (2.6)

ce qui traduit le principe général de conservation de ’énergie. A noter que 1’énergie interne, cinétique et
potentielle sont considérées comme des variables d’état.

Dans le restant du cours, les symboles en lettres minuscules représentent des quantités massiques
(par unité de masse).

L’énergie totale e; (en unités J/kg) est la somme de son énergie interne e, son énergie cinétique €g;p,,
et son énergie potentielle ej,. Les énergies cinétiques et potentielles sont des énergies macroscopiques,
correspondant respectivement & la vitesse de la particule de fluide et a sa position dans un champ de
force.

L’énergie interne représente I’énergie contenue dans la particule de fluide & I’échelle moléculaire /atomique.
L’énergie interne est composée de :

— FEnergie d’agitation thermique (ou sensible) : translation atomique/moléculaire, rotation molécu-
laire, vibration moléculaire, spin nucléaire/électronique

— Energie latente : énergie d’interaction entre atomes/molécules, absorbée ou libérée lors d’un chan-
gement de phase gaz-liquide

— Energie chimique : énergie contenue dans les liaisons entre atomes au sein d’une molécule, absorbée
ou libérée lors d’une réaction chimique provoquant la formation ou la rupture d’une liaison (comme
loxygéne Os donnant naissance & deux atomes O en écoulement hypersonique, ou le carbone C se
combinant avec l'oxygéne pour former du COq lors d’une réaction de combustion)

— Energie nucléaire, contenue dans les liaisons entre constituants du noyau (protons et neutrons)

Dans ce cours, sauf contre-indication, les fluides sont monophasiques (pas de changement de phase),
sont chimiquement inertes, et ne subissent pas de réactions nucléaires. Les variations de ’énergie in-
terne ne se manifestent donc qu’avec des variations de 1'énergie de translation atomique/moléculaire, de
rotation moléculaire, et de vibration moléculaire.

2.1.3 Formulation alternative du premier principe

L’objectif est de dériver une expression pour le travail mécanique dw qui ne fasse intervenir que des
variables d’état.

Le systéme est représenté dans la Figure 2.3. Il est formé d’un cylindre de volume V et de section S.
Le systéme est homogéne et isotrope, et le déplacement du piston se fait de maniére réversible, c’est a
dire sans frottement et lentement (quasi-statique). Par définition, le volume spécifique v du gaz enfermé
dans le cylindre et son inverse la masse volumique p sont définis par

v= - = —, (2.7)

FI1GURE 2.3 — Cylindre de section S et volume V
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ou m est la masse contenue dans le volume V. Puisque le systéme est fermé, sa masse est constante ce
qui permet d’obtenir la relation différentielle

dV = mdv. (2.8)

La position du piston est xg lorsque le volume vaut V{. Lorsque le piston se trouve en x, le volume V'
enfermé dans le cylindre peut étre exprimé en fonction de cette variable sous la forme

V — Vo =8S(x — xp), (2.9)
ce qui peut s’écrire sous forme différentielle de la maniére suivante
dV =S dx. (2.10)

L’élimination de dV entre les relations (2.8) et (2.10) permet d’obtenir la relation entre un changement
infinitésimal de volume massique et de position

m
dr = — dv. 2.11

- (211)

Comme la masse du piston est négligeable, que la pression externe est nulle, que les frottements sont

négligés, et que les mouvements sont lents (permettant ainsi d’avoir une pression uniforme au sein du
réservoir), la force extérieure F exercée sur le piston est en équilibre avec la force de pression s’exercant

sur la paroi intérieure du piston. Elle est donc égale et opposée a la force de pression, et peut alors s’écrire

F = —ps, (2.12)

ou p est la pression a l'intérieur du systéme. Par suite, le travail jw par unité de masse pour un dépla-
cement dx s’exprime par

F
ow = — dux. (2.13)

m

Avec les relations (2.11) et (2.12), ’'équation précédente devient

ow = de = =pS) (mdv) = —pdv. (2.14)
m m S

Ainsi, pour un processus réversible (lent et sans frottements), I'expression de la variation de travail
massique dw s’exprime uniquement en fonction de variables d’état avec une différentielle totale dv. Le
résultat obtenu (2.14) peut étre inséré dans expression du premier principe (2.6), ce qui produit une
expression valable uniquement pour un processus réversible (les énergies cinétique et potentielle sont
également négligées)

de; = de = dq + dw = 6q — pdv. (2.15)

Il ne restera plus qu’a trouver une expression pour dg qui, elle aussi, ne soit fonction que de variables
d’état. Ceci se fera avec 'utilisation du second principe de la thermodynamique et d’une nouvelle variable
d’état, I'entropie,

Remarque Le remplacement de dw par —pdv nécessite que le processus soit réversible, c’est a dire
lent et sans frottements. En particulier, le déplacement doit étre suffisamment lent pour que la pression
soit uniforme dans le volume V. Si le déplacement était rapide, alors des phénoménes instationnaires
pourraient se produire, avec une variation spatiale de la pression au sein du volume.

2.1.4 Chaleurs spécifiques

Tout transfert de chaleur dq entre le systéme et ’extérieur implique une variation de sa température.
La chaleur spécifique ¢ d'un gaz est définie par la relation

_ oq

= . (2.16)

c
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Or, ¢ n’est pas une variable d’état. Il est possible de spécifier la transformation au cours de laquelle la
grandeur dq est échangée afin que la chaleur spécifique soit une variable d’état. Si les énergies potentielle
et cinétique sont négligées, de; ~ de, la relation (2.15) s’écrit

0q = de + pdv, (2.17)

qui, aprés division par d1', devient
0q de n dv
c=—=— —.
dr — a7 " Par
Les chaleurs spécifiques usuelles sont & pression constante c, et a4 volume constant c,, et sont définies

par
o= (ar)
D el )
ar)j,
_ (%
“=\ar),

Puisque le systéme est simple, I'énergie interne e peut étre exprimée uniquement en fonction de la
température T et du volume massique v par

(2.18)

(2.19)

e=e(v,T), (2.20)
qui devient a 'aide de la relation différentielle (2.3) puis de la relation (2.17)
Oe Oe
de= || d — | dT' = dq — pdv. 2.21
= (50) o (57 or = v 2

Avec cette relation et en vertu des définitions (2.19) pour les chaleurs spécifiques a pression et a volume
constants, les chaleurs spécifiques ¢, et ¢, peuvent s’écrire en fonctions de variables d’état

(). ().
(3, (5)+[2), ),

La transformation & volume massique constant fournit une expression simple pour ¢, mais une expression
complexe pour c,, car les termes en dv ne s’annulent pas pour la transformation & pression constante.

La question se pose s’il n’existerait pas une autre variable d’état que I’énergie interne e qui conduise
a une définition plus simple pour c,. Cette fonction est I’enthalpie ~ dont la définition est

h=e+pv, (2.23)

(2.22)

ce qui se traduit sous forme différentielle par ’expression suivante
dh = de + pdv + vdp = §q + vdp, (2.24)

ou la derniére égalité est obtenue en utilisant I'expression alternative du premier principe (2.15). De la
méme maniére que précédemment, un systéme simple implique ’existence d’'une relation de la forme

h = h(p,T), (2.25)
qui devient a 'aide de la relation différentielle (2.3) puis de la relation (2.24)
oh oh
dh= |+ d | dT'=9¢ dp. 2.26
(3), 6 (3) 7 v -

Avec cette relation et en vertu des définitions (2.19) pour les chaleurs spécifiques a pression et & volume
constants, les chaleurs spécifiques ¢, et ¢, peuvent s’écrire en fonctions de variables d’état

o (), [62), ),
o (8),- (3,

(2.27)
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En combinant les relations (2.22) et (2.27), il est aussi possible d’écrire

omen (3 5);

(2.28)
Cp—Cy = |V — h »
P op)pl\0T ),
Le rapport des chaleurs spécifiques v est défini comme
(or)
oT
_% _ P
v = . 9e . (2.29)
or ),

Cette grandeur est une caractéristique trés importante du fluide.

2.2 Second principe de la thermodynamique

Le second principe traduit le caractére irréversible de toute transformation thermodynamique d’un
systéme et nécessite I'introduction d’une nouvelle variable d’état appelée entropie. Cependant, pour de
nombreuses transformations thermodynamiques, les effets liés & l'irréversibilité sont négligeables. Dans
ce cas, le processus thermodynamique est considéré comme réversible et il existe une évolution inverse
faisant passer le systéme de son état final & son état initial. L’intérét de considérer des transformations
réversibles est motivé par la substitution du terme dq dans le premier principe pour ne faire intervenir
que des variables d’état.

2.2.1 Entropie

La loi de Clausius affirme que, pour une transformation réversible avec transfert de chaleur dq entre
le systéme a température T et 'extérieur,
1)
f(q) = 0. (2.30)
T rév

11 est alors possible d’introduire une nouvelle variable d’état s, I’entropie, qui, pour une transformation
réversible avec transfert de chaleur dq entre le systéme & température T et I’extérieur, est définie par

ds = (‘;?) (2.31)

L’entropie étant une variable d’état, elle peut étre utilisée quelque soit le type de transformation, réver-
sible ou irréversible. Il est alors possible d’écrire d’une maniére plus générale
oq

ds = T + ds;, (2.32)

ou le terme Js; représente l'action des phénomeénes irréversible de la transformation. Ceux-ci peuvent par
exemple résulter de phénoménes de dissipation interne, transfert de chaleur interne, diffusion d’espéces
chimiques ou encore réactions chimiques.

2.2.2 Formulation du second principe

Comme souligné au début de cette section, toute transformation thermodynamique réelle est irréver-
sible. D’aprés le second principe de la thermodynamique, la variation d’entropie d’un systéme thermo-
dynamique quelconque, due aux opérations internes, ne peut étre que positive ou nulle. Ceci se traduit
sous forme différentielle par I'une ou l'autre des relation suivantes

557L Z 07

5q (2.33)
ds > —.
T
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Ces équations sont diverses formes du second principe de la thermodynamique. Si les phénoménes irré-
versibles d’une transformation sont négligeables (ds; = 0), la relation (2.32) donne immédiatement

0q = Tds. (2.34)

Il est alors possible de ne faire apparaitre que des variables d’état dans I’expression du premier principe
puisque les relations (2.15) et (2.24) deviennent maintenant

de = d0q — pdv = T'ds — pdv,
(2.35)
dh = Tds + vdp,

ou de maniére équivalente

Tds = de + pdv = dh — vdp. (2.36)

Ces relations, appelées relations de Gibbs, sont intéressantes, car elle ne contiennent que des variables
d’état.

Ces relations ont été établies en supposant que le processus était réversible. Or, ces relations ne
font intervenir que des variables d’état, et doivent étre valables indépendamment du processus, qu’il soit
réversible ou irréversible. Si le processus est irréversible, ces relations restent donc valables. En particulier,
si le processus est irréversible, dqg < T'ds et le travail des forces de pression doit donc étre plus grand que
pdV afin que les relations de Gibbs restent vérifiées.

Les relations de Gibbs sont les relations fondamentales de la thermodynamique, car valables tout
aussi bien pour des processus réversibles qu’irréversibles.

2.3 Transformations thermodynamiques

2.3.1 Relations thermodynamiques

Il est possible de trouver des relations générales entre variables thermodynamiques et entre leurs
différentielles mutuelles.
Relations thermodynamiques obtenues a partir de s = s(T,p) et h = h(T,p)

Pour des systémes simples, il est toujours possible d’écrire des relations de la forme s = s(T,p) et
h = h(T,p). Par conséquent, les expressions différentielles associées a ces équations s’écrivent

0s s
ds = () dT + () dp, (2.37)
oT » op) r
Oh oh oh
dh = | =5 dT—i—() dp =c dT—I—() dp. 2.38
La relation de Gibbs (2.36) et la seconde relation ci-dessus (2.38) donnent
~dh  wdp 1 oh vdp
puis
1 1 [[/oh
ds = TcpdT + T {(%)T - v] dp, (2.40)

qui par identification avec (2.37) génére les deux relations thermodynamiques suivantes

ds\ 1 [(0h\ ¢
(2) -2 (2) -5 o
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(@), ~71(@), ] o

En tenant compte de la propriété différentielle des dérivées croisées

(& @),), -G ()., 49

OhY _ _p(O0) _1 T (O 14 g
(3P)T vt (3T>,, AR <8T>p B p(l B - T). (2.44)

Quand cette relation est insérée dans (2.42), on obtient une des relations de Maxwell :

(5), (),

(5),(5).(5),

ory\  ByTv
() -4

De maniére similaire avec la relation de réciprocité :

(3),3),8), -~

alors le coefficient de Joule-Thompson p .. peut étre obtenu

on obtient

Avec la relation de réciprocité :

alors

3T) 1-8,T
=(—) =————. 2.49
ne=(55) == (249)
11 est ainsi possible d’écrire pour un fluide (simple) :
1
dh = ¢, (dT — pypdp) = cpdT + ;(1 — BpT)dp (2.50)

Relations thermodynamiques obtenues a partir de s = s(v,T) et e = e(v,T)

Pour des systémes simples, il est toujours possible d’écrire des relations de la forme s = s(v,T) et
e =e(v,T). Par conséquent, les expressions différentielles associées a ces équations s’écrivent

0s 0s
ds=|—) d — | dT 2.51
= (), (ar), 250
Oe Oe
de=|—] d — | dT. 2.52
= (), (ar), 2
La relation de Gibbs (2.36) et la seconde relation ci-dessus (2.52) donnent
_de  pdv 1 Oe Oe pdv
puis
1 Oe 1 [ Oe
- - il — (= T 2.54
o (5) Joo e 7 (57) o 25

qui par identification avec (2.51) génére les deux relations thermodynamiques suivantes

0s 1 [/ Oe Cy
(o7), -7 (o).~ 7 (25

v
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Js 1 Oe
- = = _— . 2.
(8U>T T [ZH_ (‘%>T] (2:56)
En tenant compte de la propriété différentielle des dérivées croisées
0 ([ 0s 0 [0s
(e (o)), = (G (), (250
Oe B dp
(5:), =7 (), -
de 1 Op
(ap>T G [p g (w) |

2.3.2 Calcul de la variation d’entropie

on obtient

(2.58)

Le changement d’entropie lors d’une transformation générale entre deux états infiniment proches est
donnée par la relation de Gibbs (2.36) qui est reproduite ici

1 P
ds = Tde + ?dv. (2.59)

Par intégration des transformations infinitésimales séparant les états 1 et 2, il est possible d’écrire la
variation d’entropie entre ces états sous la forme

2 2
de P
As =38y —s ——/ ——l—/ —dv. 2.60
2 ! 1 T 1 T ( )

Comme le systéme est simple, I’énergie interne est de la forme e = e(v,T') ce qui conduit a 'expression

21 Oe Oe 2 P
ao= [ 7 [(w)ﬁ”(av)ﬁ“} + [ (261

Avec les relations thermodynamiques (2.55) et (2.58) ainsi que de la définition de la chaleur spécifique a
volume constant (2.22), il est possible d’écrire

Ze 21 de Ze 2/ 0p
As= [ Sar e = [ Zar = 2.62
o= [ g+ [ 2 |(5), o= [ Fer [ (), e (262

qui est une relation générale puisque aucune hypothése n’a été faite pour la transformation.

2.3.3 Transformation isentropique

A partir de la relation (2.32)
]
@:%+&, (2.63)

une transformation est isentropique quand il n’y a pas de variations d’entropie, ds = 0. C’est le cas pour
une transformation adiabatique, c’est a dire avec g = 0, et réversible, c’est a dire avec §s; = 0.

2.3.4 Vitesse du son

Un milieu fluide est choisi au repos avec les propriétés uniformes pg, pg, sg- Le fluide est tel que
toute dissipation et conduction thermique sont absentes de toute transformation. L’entropie s reste alors
constante au cours du temps, soit s = sg. Par conséquent, il suffit de connaitre une seule autre variable
d’état pour déterminer complétement 1’état du systéme simple, comme par exemple p = p(p).

Une trés petite perturbation de pression est générée dans le fluide. Avec un développement en série
de Taylor autour des conditions de référence pg et sg, il est possible d’écrire

0 1 /0?2
Apzp—m:(ai) <p_p0)+2(8p€) (p—po)>+.... (2.64)
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et définir la grandeur

-[(3)),

ot le symbole 0 indique que la dérivée est évaluée aux conditions de référence. Au premier ordre, I’équation
devient

Ap=p—po=az(p—po) = aAp, (2.66)
ou la grandeur ag a la dimension du carré d’une vitesse. Ceci conduit naturellement & la définition de la

vitesse du son.

Vitesse du son La vitesse du son est la grandeur a définie par

qui correspond a la vitesse de propagation des ondes de pression.

2.3.5 Compressibilité

Comme indiqué dans le Chapitre de I'Introduction, en mécanique des fluides la compressibilité est
une indication de la variation de la masse volumique, quelle qu’en soit la cause.

En thermodynamique, le coefficient de compressibilité d’un fluide quantifie la variation du volume V'
d’une particule de fluide (et donc de sa masse volumique) sous effet de la pression p.

Coefficient de compressibilité Le coeflicient de compressibilité d’un fluide est définie par la relation

-1 (‘Z) . (2.68)

Le signe négatif est indicateur du fait que pour des fluides normaux une augmentation de pression dp
engendre une variation négative du volume dV'.

Cependant cette définition n’est pas suffisante pour un fluide dépendant de deux variables d’état. Si
la température d’un élément fluide reste constante, on définit la compressibilité isotherme par

1 /oV

D’autre part si aucune chaleur n’est enlevée ou ajoutée a I’élément et si tout phénoméne irréversible est
ignoré, la compression est isentropique et le coefficient de compressibilité est défini par

1 oV

Comme la masse m est constante pour une particule de fluide, le coefficient de compressibilité peut étre
écrit en fonction du volume massique (ou spécifique) v

1/0 1/0
a, =—— —— () I (2.71)
T v \9op) v \9p/,
De maniére similaire, le coefficient de compressibilité peut s’écrire en fonction de la masse volumique p
1/d
a=- ('0) . (2.72)
p \dp

ou le signe négatif n’apparait plus du fait que p est égal a 1/v.
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Compressibilité Le choix des variables d’état décrivant la variation de la masse volumique est fait
selon le contexte de la transformation (ou I’écoulement).

Comme indiqué dans le Chapitre de I'Introduction, il est commun d’utiliser des variables d’états
facilement mesurables (pression p et température T') pour exprimer la compressibilité, c’est a dire la
variation de masse volumique ou de volume spécifique

dp dv

d
=y =y = Bydl = (agp) = (G 1)

drT

s (2.73)

ot le coefficient d’expansion thermique isobare a été donné en (1.2) et est reproduit ici

1/ 0p 1/ 0v
Bp=—2=) === - (2.74)
p \ 0T » U aT »
Dans le cadre de ce cours, les écoulements sans transfert de chaleur et sans frottements, dits isen-
tropiques, sont communs. De ce fait, le choix de la pression p et de I'entropie s comme variables d’état

donne p 1 /9 170 T
ap _ 1 (P) dp + = (P) ds = asdp — 6L ds (2.75)
p p\9p/, p\9s/, Cp

ou le coeflicient devant la variation d’entropie ds s’obtient avec le résultat mathématique classique entre
différentielles partielles et 1'utilisation de la relation thermodynamique (2.103) pour ¢,

(a7)
1/0 1 \oT T
1 (P) _1 v _ B (2.76)
p \9s p P <5‘s> p
oT »
Ainsi, pour un écoulement (ou une transformation) isentropique
d 1 d d
W ndp="> 2_L2 D (2.77)
p p(op\ p pa® p
op),

Remarque Pour spécifier la compressibilité d’un écoulement isnetrope, le module d’élasticité isentro-
pique K (appelé en anglais, isentropic bulk modulus) peut aussi étre utilisé. Il est défini par

1 Op 9
K _— - 2.
s - P ( P)S = pa”, (2.78)

Interprétation du nombre de Mach

Nous avons vu en introduction que la grandeur caractérisant la compressibilité d’un écoulement est
le nombre de Mach dont nous rappelons la définition

u
M= — 2.

ol a est la vitesse du son locale et u la norme de la vitesse locale u de ’écoulement. En considérant le
carré du nombre de Mach, il est possible de faire apparaitre le module d’élasticité isentropique (2.78).
En effet
u pu?  pu?S
a> K, K,S’
ou S est une surface arbitraire. Or, le numérateur et le dénominateur du dernier membre de cette relation
peuvent étre interprétés comme des forces d’inertie et de rigidité

(2.80)

Finertie ~ PUQS, et Frigidité ~ K557 (281)
mais aussi des contraintes puisque o = F'/S

~ 2 ~
Oinertie ~ PU et Origidité ~ K. (282)
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Le nombre de Mach exprime ainsi le rapport entre les effets d’inertie et de rigidité, soit

M2 ~ Tinertie (283)

Origidité

L’écoulement est compressible lorsque les forces d’inertie dominent les forces élastiques responsables de
la propagation des ondes de pression.

2.4 Propriétés thermodynamiques des gaz parfaits

2.4.1 Définition

Si les atomes ou molécules composant le fluide sont suffisamment éloignées les uns des autres pour
négliger leur interaction et que leur énergie se présente uniquement sous forme cinétique, la théorie
cinétique des gaz montre que 'état thermodynamique d’un gaz parfait (ideal gas en anglais) répond a

I’équation
n /CNA
=nkT = | — — =\ T=pT 2.84
p=n <NAM)<M> prT, (2.84)

couramment appelée équation d’état des gaz parfaits. Les différents termes de cette équation sont les
suivants

n : nombre de particules (atomes, molécules) [m—?]
par unité de volume
k :  constante de Boltzmann 1.3806488 - 10723 [J- K1
R =kNa :  constante des gaz parfaits 8.3144621 [J- K~ -mol™}]
M :  masse molaire [kg - mol 1]
Ny : constante d’Avogadro 6.02214129 - 10> [mol 1]
NLAM =p : masse volumique [kg - m~3]
r= % :  constante molaire des gaz parfaits [J- kg™t K1
Cette définition est équivalente a I’équation générale (2.73), qui est rappelée ici
dp dp dT
— =a.,.dp—B,dl = (.. -p)— — (Bp-T) —, 2.85
L — o dp= 5, dT = (0 -0) L = (3, 1) (285)
car pour un gaz parfait les coefficients o, et 8, peuvent étre facilement évalués
an-p=1, Bp-T =1, (2.86)
ce qui met I’équation originale (2.85) sous la forme
d ) dTr
g __ % (2.87)
p p T

qui n’est rien d’autre que la loi des gaz parfaits écrite sous forme différentielle.

2.4.2 Conséquences de I’équation des gaz parfaits
Energie interne et enthalpie

A partir des relations thermodynamiques suivantes choisies parmi celles obtenues précédemment

)25 (%)
op)r p p*|\OT),

e _ 1| (%
dp T_p2p ar),

7 (2.88)

(2.89)
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et dans le cas d’un gaz parfait, ['utilisation de 1’équation d’état (2.84) permet I’évaluation des différents
termes. Les relations précédentes donnent respectivement les résultats

(?;)T =0, (2.90)

(g;)T = 0. (2.91)

Par conséquent, pour les gaz parfaits, ’enthalpie h et I’énergie interne e sont uniquement fonctions de la
température. Ainsi

e=r¢e(T) et h=h(T). (2.92)
Variation de I’énergie interne

Etant donné que pour un gaz parfait I’énergie interne n’est fonction que de la température (2.92), il

est possible d’écrire
Oe Oe Oe
de=——| d — | dT'=| = | dT. 2.93
= ()0 (5), = (7)), 259

De plus, a l'aide de la définition de la chaleur spécifique & volume constant (2.22), une simple intégration
donne

e= /CU(T)dT + const, (2.94)
qui, pour une transformation & ¢, constant, devient

e = ¢, T + const. (2.95)

Variation de I’enthalpie

Comme pour un gaz parfait ’enthalpie n’est fonction que de la température (2.92), il est possible

d’écrire oh oh oh

De plus, a ’aide de la définition de la chaleur spécifique a pression constante (2.27), une simple intégration
donne

h= /cp(T)dT + const, (2.97)
qui, pour une transformation & c, constant, devient
h = ¢,T + const. (2.98)

Un gaz pour lequel ¢, et ¢, sont indépendants de la température (sur une certaine plage de tempé-
rature) est dit gaz parfait a chaleurs spécifiques constantes (un tel gaz est dit, en anglais, perfect gas ou
encore, thermally and calorically perfect gas).

Chaleurs spécifiques

La différence entre les chaleurs spécifiques a pression et & volume constant a été exprimée a la relation
(2.28). Avec le résultat (2.92) et I'équation d’état (2.84), la relation de Meyer est obtenue

oo (8))(3), (%),

Apreés division par ¢,

1T (2.100)
Cp  Cp
puis avec le rapport des chaleurs spécifiques -, il vient
Gp=—"— et  cy=— (2.101)

Py -1
L’Annexe C présente une étude approfondie de l'influence de la température sur les chaleurs spéci-
fiques et le rapport des chaleurs spécifiques.
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Variation d’entropie avec s = s(p,T)

Pour des systémes simples, il est toujours possible d’écrire des relations de la forme

0Os 0s
ds=|—=— | d — | dT. 2.102
= (), (), 2102
Les relations thermodynamiques (2.41) et (2.42) évaluées avec 'équation d’état (2.84) deviennent
s v 0s c
. _ —— t —_— = —p. 2.103
(&)= = ()~ 2109

Aprés insertion de ces relations dans (2.102) et utilisation de I’équation d’état, ’entropie devient

dar
5= /cp? — r1n(p) + const, (2.104)

qui, pour une transformation définie a ¢, constant, devient

T2> <p2)
As=c,In| =) —rIn(—=|. 2.105
e - (2.105)

Variation d’entropie avec s = s(v,T)

Pour des systémes simples, il est toujours possible d’écrire des relations de la forme

0Os 0s
ds=——| d — | dT. 2.106
= (&), (), (2109
Les relations thermodynamiques (2.55) et (2.56) évaluées avec I’équation d’état (2.84) deviennent
0s P Js Cy
— == t — | == 2.107
(m)T T ° <8T>v T (2.107)

Aprés insertion de ces relations dans (2.106) et utilisation de I’équation d’état, ’entropie devient
dr
5= /cv7 + r1n(v) + const, (2.108)

qui, pour une transformation définie a ¢, constant, devient

T
As = ¢, In <T21) +rln (:’j) . (2.109)

2.4.3 Transformation isentropique

Pour un gaz parfait a chaleurs spécifiques constantes, la relation (2.109) devient, en utilisant la

relation (2.101) pour c¢,,
T T2 (%)
As = In| —+ In| — 2.110
’ 7—1H(T1)+TH<U1>’ (2410

1
1 T2 y-1 V2
~As=In(| — In{—=). 2.111
; s n (T1> +In (v1> ( )

Une transformation isentropique, c’est-a-dire adiabatique et réversible, correspond a As = 0. La substi-
tution de cette condition dans la relation précédente méne a

T2 ﬁ V2
1 — 1 — 1 =0 2.112
H<T1) - n(”l) ’ ( )

soit,
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ce qui s’écrit aussi sous la forme

(:) _ (%)” (2.113)

Avec ’équation des gaz parfaits, les relations deviennent

()-() « G)-() o

puis avec v = 1/p l'expression suivant est obtenue, souvent appelée relation isentropique
p = const - p”. (2.115)

2.4.4 Vitesse du son

Dans le cas d’un gaz parfait, I’équation d’état permet d’évaluer la vitesse du son explicitement en
fonction de variables d’état. En effet, a partir de la relation isentropique (2.115)

b t. o7
<p) = const - yp' 7t = ’ym = 72, (2.116)
dp) p p
et avec I’équation d’état
Ip
2
== =~rT. 2.117
! (3/))5 " —
Il est & remarquer que
0
(p> —rT =2 (2.118)
op) p

d’otl la relation suivante est déduite

(2).(2),

Cette relation (2.119) est en fait générale pour tout fluide simple, pas simplement un gaz parfait.
La vitesse du son est donc une propriété du fluide par 'intermédiaire des grandeurs r et -, et dépend
de la température T (également a travers 7).

2.4.5 Compressibilité d’un gaz parfait en écoulement isentropique

A partir de Péquation (2.77) pour un écoulement isentropique

d d
?p = % ;p (2.120)
et les relations p = prT et a? = yrT
d 1d
L (2.121)



26

Propriétés thermodynamiques des gaz parfaits




Chapitre 3

Equations fondamentales

Pour les écoulements incompressibles, les variables indépendantes sont la pression p et la vitesse u.
Par conséquent, seules les équations de conservation de la quantité de mouvement et de la masse sont
nécessaires.

Pour les écoulements compressibles, la masse volumique p est variable. Il est ainsi nécessaire d’in-
troduire une équation de conservation supplémentaire : I’équation d’énergie. En plus de la masse volu-
mique, ’équation de conservation de 1’énergie fait intervenir de nouvelles variables : ’énergie interne e
(ou lenthalpie h) et la température T. Par conséquent, il est nécessaire d’inclure deux autres équations
thermodynamiques, dites constitutives, pour la fermeture du systéme d’équation. Une équation, dite
équation d’état, relie généralement trois variables d’état facilement mesurables, telles la pression p, la
température T, et la masse volumique p. La deuxiéme équation relie I’énergie e (ou l'enthalpie h) a deux
autres variables d’états, généralement mesurables.

En résumé, les variables nécessaires pour 1’étude des écoulements compressibles sont au nombre de
sept p, u, e, p et T. Il y a donc les cing équations de conservation (masse, quantité de mouvement,
énergie) et les deux équations constitutives (équation d’état, relation thermodynamique).

3.1 Equations de conservation

3.1.1 Conservation de la masse
Formulation intégrale

L’équation de la conservation de la masse traduit I’équilibre entre la variation temporelle de masse
volumique & intérieur d’un volume V (choisi fixe, c’est a dire ne dépendant pas du temps) et son débit
a travers la surface S de ce volume. Sous forme intégrale I’équation s’écrit

g/ pdV—l—/ﬁ-(pu)dS:O, (3.1)

et a I'aide du théoréme de la divergence (et de 'hypothése que le volume est fixe)
0
/ {” +V- (pu)] dv = 0. (3.2)
v Lot

Formulation différentielle

Comme (3.2) doit s’annuler quel que soit le volume V' sur lequel porte l'intégrale, 'intégrant doit
forcément étre nul. L’équation de conservation de la masse peut étre formulée sous forme différentielle

Jdp B
% + V- (pu) =0, (3:3)

qui représente la forme locale de (3.2).

3.1.2 Conservation de la quantité de mouvement
Formulation intégrale

Le principe de conservation de la quantité de mouvement stipule que la variation temporelle de
cette grandeur est égale a la somme des forces. Ici, la somme de la variation temporelle de quantité de
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mouvement & Uintérieur du volume V et son flux a travers la surface S est égale a la somme des forces
surfaciques et volumiques

a/pudV—i—/ﬁ-(puu) dS:/ﬁ-ZdS—i—/pde, (3.4)
ot s s v

ou X représente le tenseur des contraintes et f le vecteur des forces volumiques. Il est utile de décomposer
le tenseur des contraintes comme la somme d’un tenseur ne faisant intervenir que la pression p et un
tenseur des contraintes visqueuses T dépendant du mouvement du fluide

=—pl+T. (3.5)

ou | est le tenseur identité. Le théoréme de la divergence permet de transformer Uintégrale surfacique
(avec ’hypothése d’un volume fixe)

/ [aap:Jrv (puu)] v = /V ):dv+/ pfdv, (3:6)

ol uu représente un tenseur dyadique (que 'on représente souvent, et lourdement, comme un produit
tensoriel u ® u) et
V-X=-Vp+V.T. (3.7)

Pour un écoulement sans forces visqueuses, ce terme s’écrit
V-X=-Vp (3.8)

tandis que pour un écoulement sans contraintes visqueuses
> = —pl, (3.9)

ce qui représente la loi de comportement d’un fluide parfait.

La distinction doit étre faite entre un fluide parfait et un écoulement sans forces visqueuses. Par
exemple, I’écoulement potentiel (c’est a dire sans vorticité, pour lequel le vecteur vitesse peut s’écrire
comme le gradient d’un potentiel) d’un écoulement incompressible a viscosité constante est un écoulement
sans forces visqueuses, méme si le fluide est visqueux. Dans la majorité des cas pour ce cours, seuls les
écoulements de fluides parfaits seront traités.

Ainsi, pour le cas de fluides parfaits (ou des écoulements sans forces visqueuses), les formulations
générales de conservation de la quantité de mouvement (3.4) et (3.6) deviennent respectivement

0 / pudV+/ﬁ-(puu) dS’:—/pﬁdS+/ pf dV, (3.10)
ot s s v
et 9
/ [ v (puu)} dV:f/ VpdV+/pde. (3.11)
ot v v

Formulation différentielle

Comme (3.6) doit étre vérifiee quel que soit le volume V sur lequel porte U'intégrale, la somme des
intégrants du membre de droite doit étre égale a celle du membre de gauche. L’équation de conservation
de la quantité de mouvement peut étre formulée sous forme différentielle

dpu

o0 +V.-(puu) =V -Z4+pf =—-Vp+ V- -T+pf, (3.12)
laquelle, avec la loi pour un écoulement sans forces visqueuses (3.8) ou pour un fluide parfait (3.9), s’écrit

dpu

e + V- (puu) = —=Vp + pf, (3.13)

qui représente la forme locale de (3.11).
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Formulation d’Euler

Dans le cas d’'un écoulement sans forces visqueuses, il est possible d’obtenir une autre formulation
de la conservation de la quantité de mouvement, qui porte le nom d’équations d’Euler. Les termes du
membre de gauche de (3.13) peuvent étre développés pour faire apparaitre

0 0
u[ai—kv-(pu)] +p<(;+u-Vu> =—Vp+pf, (3.14)

ou le premier terme du membre de gauche s’annule de par 1’équation de conservation de la masse (3.3).
Ainsi, les équations d’Euler s’écrivent sous la forme

Du
_— = f. .1
P Dr Vp+p (3.15)
Formulation de Lamb
Avec la relation vectorielle
u? u?
u-Vu:V?—u/\(V/\u):V?—u/\ w, (3.16)

ol u2 = u- u, et w est le vecteur tourbillon, vorticité, ou rotationnel du vecteur vitesse

w=VAu, (3.17)
léquation d’Euler (3.15) peut s’écrire sous la forme de Lamb

Ou 1 u?
- — =——-Vp—-V—+f 1
. uN w 4 5 (3.18)

Formulation de Crocco

Cette formulation est obtenue & partir de la relation de Gibbs (2.36)
1
—dp = dh — Tds. (3.19)
p
Les différentielles totales peuvent étre développées en fonction des variables spatiales
1
<Vp —Vh+ TVs> ~dx = 0. (3.20)
0
Par suite, indépendamment de dx, distance entre deux points de ’espace, cette équation devient
1
-Vp=Vh-TVs, (3.21)
p

qui permet d’obtenir avec I'expression (3.18) la formulation de Crocco pour la conservation de la quantité
de mouvement
Ju

afu/\w:th0+TVs+f, (3.22)

ou hg est I'enthalpie de réservoir, de stagnation, ou d’arrét, définie comme

u2
ho=h+ . (3.23)

Si la force volumique f peut s’écrire comme le gradient d’un potentiel —V ¢, alors ’enthalpie totale est

définie comme )

ht5h+%+¢=ho+¢. (3.24)

En dynamique des gaz, les forces volumiques sont souvent négligeables, et ’enthalpie d’arrét est souvent
appelée enthalpie totale.
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L’équation de Crocco sous la forme

Vho:—g—?+u/\w+TVs+f, (3.25)

devient alors selon les hypothéses :

Permanent Vhy=uAw+TVs+f
Sans forces volumiques Vhy=uAw+TVs
Isentropique Vhy=uAw

Irrotationnel Vhy=0 — hg = const

Dans ce dernier cas ’enthalpie de stagnation hg est une constante dans tout I’écoulement.

Lorsque I’écoulement est rotationnel, il est possible de projeter la relation Vhy = u A w le long d’une
ligne de courant de vecteur unitaire £ = u/u, de sorte que . (uAw) =0cet £-Vhy = 0. Dans ce cas de
figure, ’enthalpie de réservoir est constante le long d’une ligne de courant, et la constante change pour
chaque ligne de courant.

3.1.3 Conservation de I’énergie
Formulation intégrale

Comme dans le cas du premier principe de la thermodynamique, I’équation d’énergie traduit le
principe général de la conservation de ’énergie, c’est-a-dire que la quantité totale d’énergie est constante
mais qu’elle peut étre transférée ou transformeée. Ici, I’équation d’énergie stipule que la somme de 1’énergie
contenue dans le volume V et de son flux a travers la surface de ce volume est égale aux différentes sources
d’énergie. Les sources sont le travail des force de surface, le travail de forces de volume, le transfert de
chaleur q et le rayonnement r. Ceci s’exprime par

gt/peodV—&—/V (pegu) dV = /V (X-u) dV+/p(f~u) dV—/V-qu—i—/rdV, (3.26)
v v v

ou

1
e =e+ §u2 (3.27)

est 'énergie de stagnation (avec u®* = u - u). Pour un fluide parfait, le travail des forces de contact se
réduit & celui des forces de pression en vertu de (3.9), soit

gt/peodV+/V (pegu) dV = — /V (pu) dV+/p(f-u) dV—/V-qu+/rdV. (3.28)
v v 1%

2

Formulation différentielle

Comme (3.28) doit étre vérifiée quel que soit le volume V sur lequel porte lintégrale, la somme des
intégrants du membre de droite doit étre égale a celle du membre de gauche. [’équation de conservation
de I’énergie peut étre alors formulée sous forme différentielle

D 0
p%z (g60)+v (peou)ZV'(Z'U)+p(f'u)_V'q+T7 (329)
ou D 9
Di‘o - (gteo) + V- (peou) = =V - (pu) + V- (T-u) +p(f-u) = V-q+r, (3.30)
et pour un fluide parfait
D 0
P%Z (gfo) +V . (pegu) ==V - (pu)+p(f-u)—V-q+r, (3.31)

ce qui représente la forme locale de (3.28).
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Enthalpie

L’enthalpie peut étre introduite par I'intermédiaire de sa définition h = e+ pwv, ou, en terme de valeurs
de stagnation

1 1 1
ho =h+ §u2 =(e+pv)+ §u2 =(e+ §u2) +pv =eg+ pv. (3.32)
Ainsi 9 (pes) 9 (pho) 5
Peo _ 9P ) B
ce qui donne
Dh d (ph 0
p—t = (pho) + V- (phou) = —p+V-(pu)+V-(Z~u)+p(f-u)fV~q+7' (3.34)
Dt ot ot
ot Dho 9 (ph) b
o _ 91pho . _ @ (T ) -V
Pt = ot + V - (phou) 2 +V- (T-u)+p(f-u)—V.-q+r (3.35)
Pour un fluide parfait
Dho _ 9 (pho) _Op
PDr = o + V- (phou) = 9t +p(f-u)y—V-q+r, (3.36)

Entropie
La relation suivante, obtenue a partir de I’équation de conservation de mouvement,
D1,
—(zu*)=(V-X) - u+pf- u 3.37
ppr(5u8) = (V- E) utp (3.37)
permet de ré-écrire les équations de conservation d’énergie et d’enthalpie sous la forme

De 9 (pe)

P = o +V-(peu)=—pV-u+T:Vu-V . .q+r, (3.38)
Dh  9(ph) Dp
— = : =—+4T: -V .
Py o + V- (phu) Dt+ Vu-V.q+r, (3.39)
ou il a été fait usage de l'identité suivante
T:Vu=V - (T-u—(V-T) u (3.40)

Le terme T : Vu, la double contraction du tenseur des contraintes visqueuses et du gradient de vitesse
(un tenseur également), s’appelle la fonction de dissipation visqueuse, qui est toujours positive ou nulle.
Ainsi les forces visqueuses entrainent toujours un accroissement de I’énergie interne et de I’enthalpie.
Afin d’obtenir une équation de conservation pour I’entropie, il suffit d’introduire la relation de Gibbs
de =Tds — pdv ou dh = T'ds + vdp dans les équations précédentes
Ds 0 (ps)

TS 7
PLDi ot

+V.(psu)| =T:Vu-V.q+r. (3.41)
Pour un fluide parfait et pour un écoulement adiabatique et sans rayonnement,

Ds
— =0 3.42
2o, (3.42)

ce qui traduit le fait que l'entropie reste invariante en suivant une particule de fluide. En écoulement
permanent, 'entropie est constante le long d’une ligne de courant.

3.2 Equations d’état

Les équations de conservation de la masse, de quantité de mouvement et d’énergie forment un systéme
de 5 équations avec les sept inconnues p, p, u, T, et e (ou h). La fermeture du systéme d’équations requiert
l'ajout de deux équations d’état.
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3.2.1 Equation d’état reliant p, T, et p
Si le fluide est parfait, ’'équation d’état prend la forme simple (2.84)

p=prT. (3.43)
Pour un fluide quelconque, 'équation d’état sous forme plus générale (2.73) doit étre utilisée

dp

d dT
;=apo—ﬁpdT=(aT~p);p—

By - T) = (3.44)

3.2.2 Equation d’état pour e ou h

Pour un gaz parfait, ’énergie est définie en fonction de la température par la relation intégrale
e= /cv (T') dT + const. (3.45)

En adoptant I’hypothése que ¢, est indépendant de la température (gaz calorifiquement parfait), cette
relation se simplifie sous la forme
e = ¢, T + const. (3.46)

Dans le cadre d’écoulements de fluides, I’enthalpie h apparait comme une variable naturelle. De maniére
similaire

h= /cp (T') dT + const. (3.47)
et avec I’hypothése que ¢, est indépendant de la température (gaz calorifiquement parfait)

h = ¢,T + const. (3.48)

Pour un fluide quelconque, I’énergie et ’enthalpie peuvent étre exprimées en fonction de deux variables
d’état, comme par exemple les relations (2.52) et (2.38) qui sont rappelées ici

Oe Oe Oe
de=|—=—| dT — | dv=c¢,dT — | d 4
o= (g7), o+ (5) a0 =ewtr+ (5, @ (349
oh oh oh
dh = <> dTl + <> dp = ¢, dT + () dp (3.50)
orT » op ) P op)r
Avec le résultat (2.44) qui est rappelé ici
oh 1
Y —2a-8,-1), 3.51
(5). =505 (351)
il est alors possible d’écrire
1
dh = cpdT + ;(1 — Bp - T)dp. (3.52)

En particulier, pour un gaz parfait, 3, - T' = 1.
Cette relation peut étre ré-écrite en fonction d’un autre paramétre, le coefficient de Joule-Tompson
Py, déja introduit au Chapitre précédent, mesurable expérimentalement, et servant a caractériser les

gaz non parfaits, défini par
aT
wo=1=1 . 3.53
T ( Ip ) h ( )

oh
&%>T_“”'% (3.54)

ce qui donne une version alternative de ’équation d’état générale pour ’enthalpie h

Il a été démontré

dh = ¢, (dT — pypdp) (3.55)

En particulier, pour un gaz parfait, ;. =0
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3.3 Sens physique de la vitesse du son

La vitesse du son est une propriété variable d’un milieu puisque nous avons vu qu’elle dépend, dans
le cas d’un gaz parfait, de sa température (2.117)

dp P
a? = <> =T = =, 3.56
o).~ P (3.56)

ou les deux derniéres égalités sont obtenues en utilisant la relation des gaz parfaits (2.84). Considérons
un gaz au repos ou en translation uniforme p = py et p = pg. Créons-y une petite perturbation et
étudions son déplacement suivant une direction, par exemple x. Cette perturbation peut étre considérée
comme due & la création dans un plan d’une petite vitesse initiale u et d’une petite variation de pression
p’ générant une petite fluctuation p’ de la masse volumique. Ces grandeurs étant les mémes dans le
plan perpendiculaire & la direction x. Nous admettrons que I’écoulement est irrotationnel et adiabatique
ainsi que des transformations réversibles. Les variables dépendantes ne seront fonctions que de z et de t.
Considérons alors les équations de conservation avec les hypothéses précédentes

Op  Opu
o e Y
ou du  10p (3.57)

EJru%i p Oz’

p=kp.

Eliminons la pression entre I’équation de conservation de la quantité de mouvement et de I’énergie (3.57).
Pour cela, dérivons tout d’abord ’équation d’énergie de maniére a obtenir

dp 10p _ pOp
12 phiy 3.58
Ox R p Ox (3:58)
ainsi ’équation de conservation de la quantité de mouvement devient
ou ou p Op
— — === 3.59
ot + hrr K p? Oz (3.59)
Définissons les petites perturbations de la masse volumique par g—; = ¢, la masse volumique s’écrit alors
p/
Pﬂ0+P/P0<1+pO>P0(1+5)- (3.60)

Etant donné que nous considérons un fluide au repos ou en translation uniforme ainsi que de faibles
perturbations, les effets d’inertie peuvent étre négligées. En d’autres termes, nous avons

ou ou

Les équations de conservation de la masse et de la quantité de mouvement (3.57) deviennent a ’aide de
(3.59), (3.60) et (3.61) et en négligeant les infiniments petits du second ordre

ou 0=
ox ot
(3.62)
Ou | po 9= _
ot po 0xr

Nous éliminons alors € des relations (3.62) en dérivant la premiére par rapport a lespace et la seconde
par rapport au temps

0%  O0%u

_— 4 — = O,

otdxr ~ 0x?

(3.63)
0%u  ypy 0%

o2 " py otdr
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En utilisant la vitesse du son (3.56), I’élimination des termes en € des relations précédentes donne

*u 0%

ﬁ — G’O@ = O, (364)

couramment appelée équation de d’Alembert ou des cordes vibrantes. Sa solution générale est de la
forme,

u= F(x — apt) + G(z + apt), (3.65)

comprenant ainsi une onde progressive se propageant a la vitesse ag suivant le sens positif de axe des x
et une onde rétrograde se propageant & la méme vitesse selon le sens négatif de z. Considérons seulement
I'onde progressive

u= F(x — agt), (3.66)
ce qui nous permet d’écrire
ou ou
—=F t — = Flay. 3.67
o T (3.67)
A Daide de ce résultat, nous pouvons ré-interpréter ’hypothése (3.61) de la maniére suivante
[uF'| < |F'agl, (3.68)
en d’autres termes
lu] < lao| - (3.69)

Il faut donc que la vitesse induite par la perturbation soit trés inférieure a la vitesse de propagation de
cette perturbation.

Remarque Sil’on avait éliminé la vitesse u, on aurait pu obtenir en tenant compte de la définition de
¢ et de la relation liant la pression et la masse volumique

62p/ 82p/
ou 62 / 82 /
p p



Chapitre 4

Principes fondamentaux des écoulements
iIsentropiques permanents

Ce chapitre présente les principes fondamentaux des écoulements isentropiques en régime permanent.
Les résultats obtenus seront trés instructifs par leur simplicité pour la connaissance des effets essentiels
de compressibilité dans un écoulement. Ils ont 'avantage de mettre en évidence les grands phénoménes
qui sont les conséquences des effets de la compressibilité. Du fait de leur isentropie, les écoulements seront
adiabatiques et dénués de viscosité, et de plus, ne seront pas soumis & des forces volumiques.

4.1 Ondes de Mach

Les ondes de Mach sont des ondes isentropiques apparaissant dans un écoulement supersonique. En
particulier, une onde de Mach n’est pas une onde de choc (qui elle génére de 'entropie). Une onde de
Mach se décrit facilement par l'intermédiaire d’un schéma, introduit pour la premiére fois par Ernst
Mach lui-méme (1887), et devenu depuis trés populaire.

Le principe de base est qu’une onde de pression d’amplitude infinitésimale par rapport & la pression
ambiante se propage & une vitesse égale a la vitesse du son dans un milieu au repos (voir la discussion
dans le Chapitre 3 sur les ondes acoustiques). Si le milieu est en mouvement par rapport a la source,
Ponde se propagera toujours avec la méme vitesse par rapport au fluide (cette fois-ci en mouvement).

Le schéma ci-aprés illustre ce concept pour une onde uni-dimensionnelle dans une conduite dans
laquelle s’écoule un fluide. La conduite est tapotée a intervalles réguliers avec un petit marteau, produisant
donc des pulsations acoustiques dans la conduite avec une vitesse

Uonde = U E a, (41)

ou U est la vitesse de I'écoulement dans la conduite, a la vitesse du son (par rapport au fluide), et uonde
la vitesse de ’onde dans un référentiel fixe par rapport a la conduite.

Sans écoulement, I’'onde se propage symétriquement de part et d’autre de la conduite. Pour une vitesse
d’écoulement dans la conduite inférieure a la vitesse du son (écoulement subsonique), 'onde est portée
plus dans le sens de I’écoulement (aval) que dans le sens contraire (amont). Pour un écoulement super-
sonique, I’onde ne réussit pas a se propager en aval. Cet exemple simple illustre le principe fondamental
des écoulements compressibles, que I'influence de perturbations en amont d’un écoulement diminue avec
I'accroissement du nombre de Mach M, défini comme le rapport entre la vitesse de I’écoulement et la
vitesse du son

U
M = = (4.2)

Dans un contexte tridimensionnel, une source émet a intervalles réguliers une pulsation acoustique
se propageant dans un milieu au repos (air ambiant par exemple). Thompson (1972) utilise I'image d’un
bourdon, pour lequel les pulsations périodiques peuvent correspondre au battement régulier des ailes du
bourdon.

Cette image, qui illustre bien le principe, ne doit cependant pas suggérer qu’une pulsation est né-
cessaire : tout corps se déplagant dans un fluide génére un champ de pression qui est établi lors du
mouvement du corps par un spectre continu d’ondes de pressions se propageant & la vitesse du son
par rapport au fluide au repos. Ceci revient a remplacer la pulsation unique par une somme infinie (ou
intégrale) de composantes spectrales (de Fourier) décrivant ainsi le champ de pression.

Quand le bourdon est stationnaire, il émet des ondes acoustiques sphériques centrées sur le bourdon,
se propageant & une vitesse a par rapport au milieu.
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U<a
M<1

U>a
M>1

FIGURE 4.1 — Ondes dans un écoulement a l’arrét, subsonique, et supersonique selon Thompson (1972)

Quand le bourdon se déplace avec une vitesse U, les ondes maintiennent une configuration sphérique
avec un rayon proportionnel & l'intervalle de temps entre I'instant d’émission et I'instant considéré. En
fonction du temps, le centre géométrique de chaque onde reste fixe par rapport au milieu au repos et
coincide avec la position du bourdon au moment de I’émission de 'onde en question.

Quand le bourdon se déplace & une vitesse U inférieure a la vitesse de propagation a des ondes
(nombre de Mach inférieur a 'unité, M = U/a < 1), le bourdon ne rattrape jamais les ondes qu’il a
émises. A un instant donné (¢t = 3At), la configuration de toutes les ondes a 'aspect schématisé sur la
Figure 4.2. Le bourdon se trouve alors en position 3. Les ondes ont été émises & intervalles réguliers At.
L’onde centrée en 0 a été émise a t = 0 et son front s’est propagé sur une distance 3aAt. De méme,
londe centrée en 1 (ou 2) a été émise quand le bourdon se trouvait en position 1 (ou 2), et a l'instant
donné t = 3At, son front s’est propagé a une distance 2aAt (ou aAt).

Quand le bourdon se déplace a une vitesse U supérieure & la vitesse de propagation a des ondes
(nombre de Mach supérieur a l'unité M = U/a > 1), le bourdon dépasse systématiquement le front
de londe émise. La configuration des ondes & un instant donné (¢ = 3At) a alors l’aspect schématisé
sur la Figure 4.2. Une zone conique se dessine alors de maniére naturelle. De simples considérations
géométriques montrent que ce céne a pour demi-angle p donné par

alt 2aAt  3aAt

UAL ~ 2UAt  3UAt (4.3)

sinpu =

ou )
-1
p=sin"" 5. (4.4)

La surface de ce cone est ce que 'on appelle une onde de Mach (Mach wave en anglais). On rencontre
parfois le terme ligne de Mach, terme restrictif qui ne s’applique qu’au cas ou 'onde est rectiligne (dans
un champ ot le nombre de Mach est uniforme). En deux dimensions (bourdon cylindrique!), le cone de
Mach est remplacé par un triangle.

En dehors de ce cone, un observateur n’est pas conscient de la présence du bourdon : il s’agit de la
zone de silence. Ce n’est qu’au moment ot 'observateur est traversé par 'onde de Mach qu’il deviendra
conscient de la présence du bourdon : il se trouvera alors dans la zone d’influence.

Il est a remarquer qu'un changement de repére Galiléen qui nous place dans un référentiel fixe par
rapport au bourdon ne change pas la configuration géométrique des ondes (le cone de Mach garde la
méme ouverture). La différence vient de la présence d’un vent supersonique emportant ainsi les ondes
sphériques (et leur centre géométrique) dans le sens de son écoulement.
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a-3At
a-2At
a- At

u-2At
u-3At

Cone
de Mach

one
de silence

Angle
Zone de Mach

d’influence

u-3At

(b)

FIGURE 4.2 — Ondes acoustiques se propageant avec la vitesse du son a et émises par une source se
déplagant & vitesse (a) subsonique u < a, et (b) supersonique u > a.
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Si les ondes acoustiques sont isentropiques, 'onde de Mach est également isentropique (on remarque
sur le schéma que les ondes ne s’accumulent pas et donc que ’amplitude de pression reste similaire a
celle d’une onde simple). C’est cet aspect qui différencie les ondes de Mach des ondes de choc, qui elles
géneérent des différences de pression comparables a la pression du milieu ambiant. Une onde de Mach
est donc une onde émise par une source de pression de faible intensité, avec une amplitude largement
inférieure & la pression du milieu ambiant.

11 est important de remarquer que le bourdon (ou tout autre objet) supersonique génére un réseau
complexe d’ondes de choc et de détente dans la région en proximité du corps. A une distance grande par
rapport & la dimension du corps, les ondes de chocs et de détente interagissent pour former alors une
onde de Mach isentropique. Ainsi, 'onde de Mach peut étre aussi vue comme la configuration d’ondes
d’un véhicule supersonique & une échelle largement supérieure a la dimension du corps (qui agit alors
comme une source acoustique de faible intensité a cette échelle). Le schéma sur la Figure 4.3 illustre ces
idées.

Parabola /

-,

Equal anglese

S

FIGURE 4.3 — Configuration d’ondes autour d’un corps non ponctuel (Thompson, 1972). Les ondes de
Mach sont en trait fin, les ondes de choc en trait lourd. Loin du corps, les ondes de choc interagissent
avec les ondes de Mach (contenues dans ’éventail de Prandtl-Meyer, fan sur le schéma) pour devenir
des ondes de Mach, en intensité et en direction. Ainsi, & une échelle largement supérieure & la taille du
corps, les ondes de chocs sont représentables par des ondes de Mach.

Physiquement, ces ondes peuvent étre facilement rendues visibles dans un écoulement supersonique.
11 suffit de placer une pointe d’aiguille dans I’écoulement ou de créer une aspérité sur une paroi paralléle &
I’écoulement supersonique. La Figure 4.4 illustre ces ondes de Mach, générées par la faible épaisseur d’'un
bout de scotch collé sur la paroi, et rendues visibles par une technique de Schlieren (qui sera présentée
dans un Chapitre ultérieur). Cette technique trés simple permet d’ailleurs une évaluation du nombre de
Mach de I’écoulement en fonction d’une mesure de I'angle formé par ’'onde de Mach avec la direction de
I’écoulement.

Une onde de Mach est également une représentation physique d’un objet mathématique que 1’on
appelle caractéristique, un outil permettant la résolution d’équations différentielles de type hyperboliques
(décrivant les écoulements supersoniques). La méthode de résolution par caractéristiques se rencontrera
dans un Chapitre ultérieur.
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FIGURE 4.4 — Ondes de Mach dans une tuyére supersonique, générées par des bandes de scotch collées
sur la paroi (Noca 1989, California Institute of Technology)

4.2 Equations de conservation en écoulement isentropique

4.2.1 Conservation de la quantité de mouvement : relation de Bernoulli

Selon les hypothéses admises (fluide non visqueux et forces volumiques négligeables), I’équation de
conservation de la quantité de mouvement est celle d’Euler (3.15), soit

Du
P = —Vp, (4.5)

qui, pour un écoulement permanent, devient

2
1
u-Vu:V%—u/\(VAu):—;Vp. (4.6)

Le terme de Lamb, uA (V A u), contient le vecteur tourbillon w = V Au, qui est compliqué a traiter de
maniére analytique. Comme le terme de Lamb est perpendiculaire au vecteur vitesse, une projection le
long d’une ligne de courant (partout tangente au vecteur unitaire i= u/u) permet de s’en débarrasser,
donnant ainsi

v i Livp—o (4.7)
g T oL V=0, :
ou encore
d [u? 1dp
~ = 20 4.8
dl 2>+pm ’ (48)

que l'on peut écrire sous forme différentielle (le long d’une ligne de courant)

1
udu + ;dp =0, (4.9)
ou sous forme intégrée
M+/1d—C (4.10)
B P p=0, .

ou C est une constante le long d’une ligne de courant. Cette relation représente la version compressible de
la relation de Bernoulli rencontrée en écoulements incompressibles. En particulier, si la masse volumique
est constante, l'intégrale peut étre effectuée, et I’on retrouve bien la version familiére de la relation de
Bernoulli, u?/2 + p/pg = C.
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4.2.2 Conservation de ’énergie

Selon le Chapitre précédent, I’équation de conservation d’énergie peut s’écrire sous la forme (3.35),
et aprés application des hypothéses d’un fluide non visqueux, d’un écoulement adiabatique, et de forces
volumiques négligeables, prend la forme

D?hto = %% (4.11)
Pour des écoulements permanents, 1’équation devient
u-Vhy =0, (4.12)
ce qui implique finalement
h0:h+u—2:C (4.13)

2

ot C est une constante le long d’une ligne de courant. La version différentielle (le long d’une ligne de
courant) est
dho = dh + udu = 0. (4.14)

4.2.3 Comparaison des deux équations

Pour un écoulement isentropique, ’équation de conservation de quantité de mouvement et I’équation
de conservation d’énergie sont redondantes. En effet, la relation de Gibbs dh = T'ds + vdp et la condition
d’isentropie ds = 0 montre immédiatement

1
dh = vdp = ;dp7 (4.15)

et qu’ainsi les deux Equations 4.9 et 4.14 sont identiques. La raison vient du fait que la condition
d’isentropie fixe une des variables d’état (’entropie, s), et que l'on se retrouve alors avec une inconnue
de moins dans le probléme, ce qui implique qu’une des deux équations est obligatoirement superflue.

4.3 Grandeurs caractéristiques d’un écoulement isentropique

4.3.1 Grandeurs d’arrét, de réservoir, de stagnation, et totales

Une grandeur d’arrét (ou de stagnation pour utiliser le terme anglais) est une grandeur définie en un
point d’arrét de I’écoulement. Un point d’arrét de I’écoulement est un point ou la vitesse est nulle, dans
une configuration permanente et suite a un ralentissement (ou compression) isentropique de 1’écoulement.
Les grandeurs d’arrét sont dénotées avec un indice “0”. Ainsi, en un point d’arrét, v = ug = 0.

Si les énergies potentielles (gravité) sont nulles ou négligeables, les grandeurs d’arrét peuvent étre
assimilées a des valeurs totales (Chapitre 2). Trés souvent en aérodynamique compressible, les grandeurs
totales et les grandeurs d’arrét sont utilisées de maniére interchangeable, car les forces volumiques sont
négligées.

Une valeur totale déja rencontrée est ’enthalpie totale hg, qui correspond bien & la valeur de ’enthalpie
h pour u = 0 dans la relation 4.13. L’enthalpie totale hy est donc constante le long d’une ligne de courant
pour un écoulement permanent et isentropique.

La température, pression, et masse volumique sont des fonctions d’état de deux variables d’état, que
I'on peut choisir comme étant ’enthalpie et ’entropie. Comme ’entropie est constante, les variables ne
sont plus fonction que de I’enthalpie. En particulier, & I’enthalpie totale hg correspondra une pression
totale pg, une température totale Tj, et une masse volumique pg, toutes définies comme étant les valeurs
pour une vitesse nulle de I’écoulement, pour autant que I’écoulement soit isentropique et permanent.

Par suite, le résultat précédent implique que la température Ty est constante le long d’une ligne de
courant pour un écoulement permanent et isentropique. Il en est de méme pour la pression totale py (et
la masse volumique totale pg).

La température totale, Ty, peut étre également interprétée comme étant la température dans un
grand réservoir ou la vitesse est nulle (u = 0) et servant a alimenter une tuyére (Figure 4.5). Pour cette
raison, Ty prend parfois le nom de température de réservoir (reservoir en anglais). Les autres grandeurs
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totales, en particulier py et pg, sont d’une maniére analogue les valeurs de la pression et de la masse
volumique dans le réservoir.

Une maniére alternative de retrouver ces grandeurs totales est par ralentissement isentropique de
I’écoulement jusqu’a atteindre une vitesse nulle, par exemple au niveau du “nez” d’un corps placé dans
Pécoulement (Figure 4.5). Ce point est appelé point d’arrét, et la température sur le nez du corps porte
alors le nom de température d’arrét (qui est identique a la température de réservoir servant a générer
lécoulement). Comme ’écoulement est isentropique, la pression et masse volumique ne dépendent que
de la température. Ainsi, on définit également la pression totale py et masse volumique totale py comme
les valeurs de la pression et de la masse volumique au point d’arrét.

Les grandeurs totales sont mesurables expérimentalement assez simplement. Dans un réservoir, ol
la vitesse est nulle, de simple capteurs (de pression et de température) fournissent les valeurs désirées.
Au sein d’un écoulement, un capteur (de pression ou de température) basé au point d’arrét fournira les
grandeurs totales. On parlera alors de capteur de pression totale et de température totale. Ce sujet sera
développé plus amplement dans le cas d’un gaz parfait ci-dessous.

=1,
P =Dy
P=Po
u=20
T=1 =1,
p:pO p:p% -
p:po /-T:papau p:p%_—\/
=t | u:umw

FIGURE 4.5 — Grandeurs d’arrét, de stagnation, ou de réservoir (ou totales, en absence de forces volu-
miques) définies comme étant les valeurs des variables thermodynamiques dans un réservoir alimentant
une tuyére, ou les valeurs en un point d’arrét suite & un ralentissement ou une compression isentropique.

4.3.2 Grandeurs statiques

Les valeurs que l'on appelle statiques sont celles qui ne portent pas l'indice 0, telles p, T, et p.
Elles correspondent aux valeurs thermodynamiques mesurées par un observateur se déplagant localement
avec I’écoulement (on peut imaginer 'observateur juché sur une montgolfiére, entrainée librement par
Pécoulement). L’observateur, muni de simples capteurs, serait alors au repos par rapport au fluide, et
mesurerait ainsi les valeurs statiques de ’écoulement (le terme statique vient du fait que le fluide est au
repos par rapport a 'observateur). Dans la pratique, il n’est pas possible de déplacer 'observateur avec
I’écoulement. Une méthodologie simple pour la mesure de la pression statique est d’utiliser un orifice
dans une paroi placée parallélement & I’écoulement.

4.3.3 Grandeurs soniques

Un point sonique d’'un écoulement est un point ol la vitesse est égale & la vitesse locale du son. Une
grandeur sonique est une grandeur définie en un point aux conditions soniques. Les grandeurs soniques
sont notées avec un “x” en indice. En un point sonique, nous avons u = Uy = .
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4.4 Relation entre la vitesse et le nombre de Mach en écoulement
isentropique

La relation de conservation de quantité de mouvement sous forme différentielle
1
udu + —dp = 0, (4.16)
p

peut étre modifiée par I'introduction de la vitesse du son a. Comme cette vitesse du son est une variable
d’état et que 1’écoulement est isentropique, la pression est fonction de cette seule variable (ou de son

carré)
dp = (;;) da?. (4.17)

En utilisant le fait que

a? = (?;)S = (;’2) (4.18)

on trouve avec un peu d’algébre

o 2 4 32
) —o | 2 (20) —1f. (4.19)
ap /), 203 \ 0p? ) |
Le terme au sein des parenthéses est une grandeur commune en écoulements compressibles et porte le
nom de dérivée fondamentale de la dynamique des gaz (fundamental gasdynamic derivative), dénotée

par le symbole I'
a* [ 0%v

Sa valeur pour différents fluides est donnée dans le Tableau ci-dessous. L’équation de conservation de
quantité de mouvement prend alors la forme

ada__ . (4.21)

d =
uu+F_1

En introduisant le nombre de Mach M = u/a écrit sous forme différentielle (par dérivée logarithmique)

dM du da
- _ = 4.22
T -0 o (4.22)
la relation 4.21 devient
d dM /M
du __ dM/M (4.23)

u 1+ ([T —1)M?

Si ' > 1, cette relation nous dit que le nombre de Mach varie d’une maniére monotone avec la vitesse
de ’écoulement (en particulier, si le nombre de Mach augmente, la vitesse aussi). Or, pour des fluides
ordinaires, cette condition est toujours satisfaite (Tableau ci-dessous).

Fluide T
Gaz Parfait (v+1)/2
Liquide de Tait | (k+1)/2

Eau 4.4

Ethanol 6.4

TABLE 4.1 — Valeurs de la dérivée fondamentale I & 1 Atm et 293.15 K.
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4.5 Ecoulement isentropique d’un gaz parfait

4.5.1 Conservation de quantité de mouvement : relation de Bernoulli

Pour un gaz calorifiquement parfait en écoulement isentropique, on utilise la relation p o« p”, ce qui
transforme 1’équation de conservation de quantité de mouvement 4.10

2
u
A 2

— -=C 4.24
7+ =0, (121)
qui représente la version compressible de la relation de Bernoulli pour un gaz parfait. Contrairement au

cas des écoulements incompressibles, la masse volumique est ici variable !

4.5.2 Conservation d’énergie

Comme remarqué précédemment, en écoulement isentropique, I’équation de conservation d’énergie et
de quantité de mouvement sont identiques. L’équation de conservation de quantité de mouvement peut
étre ré-écrite en en fonction de la température (en faisant intervenir la loi des gaz parfaits)

2
u
2 v-1

T =C. (4.25)

En se souvenant que pour un gaz parfait ¢, = yr/(y — 1), on obtient une version alternative

2

)T + % = C. (4.26)

Cette relation peut étre obtenue directement a partir de I’équation de conservation d’énergie 4.13, puisque
pour un gaz calorifiquement parfait (¢, = constante), et h = ¢,T+const, produisant un résultat identique
(Equation 4.26) a celui obtenu a partir de I’équation de conservation de quantité de mouvement.

4.5.3 Calcul des grandeurs statiques en fonction des grandeurs totales
La relation précédente (4.26) peut étre ré-écrite en fonction de la température totale Tp

u?

cpT + 5

= ¢pTp. (4.27)
laquelle, aprés avoir divisé les deux membres par ¢,7T’, devient

TO u2
— =14+ —= 4.28
T T aeT (4.28)

puis en introduisant la relation (2.101) pour ¢, ainsi que (2.117) pour la vitesse du son a

1 2 _1
=1+ (%) =1+, (4.29)
a

ou la derniére égalité est obtenue par définition du nombre de Mach. Ensuite, en utilisant la relation
isentropique (2.115) ainsi que I’équation d’état, nous avons la relation

Y T ﬁ
() ()
qui permet d’obtenir avec (4.29) les relations suivantes

~

1 5
Po _ (1 + 72M2) , (4.31)

1

—1 —1
Po _ <1 + 72M2> . (4.32)
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FIGURE 4.6 — lustration des relations isentropiques, avec v = 1.4.

De maniére équivalente, les relations peuvent étre écrite comme suit :

T 1 1 1
P _ L . (4.33)

?0: y—1. 5’ Po —1 7= Po —1 7T
L+ ——M <1+72 M2> (1+72 M2>7

Nous constatons que pour un écoulement isentropique (pas de choc qui provoquerait une augmentation
d’entropie), les rapports T'/To, p/po et p/po ne dépendent que du nombre de Mach et des caractéristiques
du fluide (valeur de «y). L’utilisation des grandeurs totales est trés utile lors de I’étude des écoulements
isentropiques.

En outre, la variation de la température, de la pression, et de la masse volumique est monotone avec
une variation du nombre de Mach. En particulier, ces trois grandeurs diminuent avec une augmentation
du nombre de Mach. Dans le Chapitre suivant, on observera ce phénoméne dans le cas d’'une tuyére
congue pour augmenter le nombre de Mach. Ce méme phénomeéne se produit sur l'extrados (partie
supérieure) d’un profil d’aile en écoulement transsonique : le nombre de Mach augmente (devenant parfois
supersonique) et la température décroit (conduisant ainsi parfois & un phénomeéne de condensation).

4.5.4 Formulation en fonction de la vitesse du son

A partir des relations 4.24, 4.25, ou 4.27, on peut introduire la vitesse du son sous la forme ~rT ou
¥p/p, et ainsi obtenir (avec un point d’arrét d’indice 0)

T u? ~ qrTy

hadl 4.34
po I M (4.34)
ou )
/P W apo/po. (4.35)
y—1 2 v—1
et ainsi, avec a = \/yrT = \/vp/p et ag = /yrTo = \/7Po/po
a? u? a?
—_— = — 4.36
o L Sk (4.36)
que l'on peut récrire en faisant apparaitre le nombre de Mach
a® v—1 -t
— =1+ -—=—M? 4.37
o= (1+ 2500 (437

ce qui signifie que la vitesse du son en un point donné d’un écoulement est une fonction du nombre de
Mach. Ce type de formulation sera trés utilisée par la suite, puisque le nombre de Mach caractérise 'effet
de compressibilité dans un écoulement.
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4.5.5 Formulation en fonction des grandeurs soniques

D’aprés les propriétés d’un point sonique, ’équation d’énergie (4.36) sur un tel point s’écrit

2
u [¢
. + 2, (4.38)

soit
a U y+1

=Jr-_ 4.
y—12 " 2(y-1™ (4.39)

que nous pouvons écrire sous la forme suivante de maniére & déterminer le type d’écoulement en fonction
des grandeurs soniques

2 2 2 2
u° —a a; —a
== , (4.40)
2 v—1
si U > Ay R Ay > a — u > a,
si U < Qs A ay < a — u < a,

ce qui permet de voir si en un point I’écoulement est subsonique, sonique ou supersonique.

4.5.6 Calcul des grandeurs statiques en fonction des grandeurs soniques

Considérons maintenant un point de ’écoulement pour lequel la vitesse est sonique. Deux configura-
tions classiques permettent d’illustrer ce concept.

Tout d’abord le cas d'un écoulement dans une tuyére alimentée par un réservoir a pression totale
(vitesse nulle) donnée. Nous verrons dans 1’étude du comportement de 1’écoulement dans la tuyére, et
selon le rapport de pression entre la pression du réservoir et la pression externe, si le col de la tuyére
posséde ou non cette propriété particuliére. Lorsque I’écoulement dans le divergent devient supersonique,
partiellement ou totalement, la vitesse au col ne change plus et est égale & la vitesse du son locale.
Lorsque ces conditions sont vérifiées, on parle de grandeurs soniques au col pour la vitesse, la pression,
la température, etc.

Une seconde configuration est celle de I’écoulement autour d’un avion, par exemple, qui est en vol
transsonique, soit & un nombre de Mach proche de I'unité. Supposons qu’en un point quelconque autour
de 'avion, la vitesse locale de I’écoulement puisse atteindre la vitesse locale du son. Si cette vitesse est
atteinte en un point, sur une ligne ou une surface, nous parlerons de point, ligne ou surface sonique. Dans
ce cas, nous avons la condition M = 1 et les relations (4.29), (4.31) puis (4.32) deviennent respectivement

i 1
L2 ()T e (27 (4.41)
Ty ~v+1" po \v+1 " po \v+1
Monoatomique | Diatomique
vy 5/3 = 1.667 7/5=14 | 9/7=1.286
T./To 0.7499 0.8333 0.8750
D+/Po 0.4871 0.5283 0.5483
P+/ Po 0.6495 0.6339 0.6267

TABLE 4.2 — Valeurs des grandeurs au point sonique par rapport aux grandeurs totales

Il reste, dans cette formulation, & introduire le nombre de Mach sonique pour lequel la vitesse du son
est choisie aux grandeurs soniques
U
M, = —. (4.42)
*
Considérons I'équation d’énergie associée aux grandeurs soniques (4.39) et divisons la par u? de maniére

a obtenir
(a/u? 1 _ y+1 a
y—1 2 2(y—1)u?’

(4.43)



46 Ecoulement isentropique d’'un gaz parfait

qui, aprés réarrangement et introduction des nombres de Mach M et M, devient

2 2
M= pE -1 (4.44)

et I'inverse est donnée par
M2 — (v +1) M?

e e SR (4.45)

On peut vérifier que
M,=1 +—— M=1,
M, <1 «— M<1, (4.46)
M,>1 +— M>1

Par contre lorsque M — oo, M, est fini. En effet, nous avons
1\ /2
lim M, = (”) : (4.47)
M—o00 v—1

qui, pour lair avec v = 1.4, donne M, = 2.4495. L’utilisation des grandeurs soniques est trés utile lors
de I’étude des écoulements supersoniques dans des tuyéres.

4.5.7 Détente dans le vide

Pour le cas d’un réservoir a une température totale Ty (Figure 4.5) se déversant dans le vide (p = 0), il
est possible de trouver les conditions en sortie de tuyére, en supposant que I’écoulement est isentropique.

A partir de la relation 4.27
2
T + % = ¢, T, (4.48)

il est possible de trouver la vitesse des gaz en sortie

u=4/2¢c,(To — T). (4.49)

Avec un écoulement isentropique

=1
w=|2¢,Tp |1— <p> . (4.50)
bo
Ainsi, la vitesse maximale est atteignable quand p = 0 (vide)
Umax = v/2¢pT0. (4.51)

En utilisant ag = (y775)*/? et ¢, = yr/(y — 1), on trouve finalement

2
max — . 4.52
U ”771(10 (4.52)

Bien que cette vitesse soit finie, d’autres grandeurs ne le sont pas, comme le nombre de Mach de sortie
qui lui tend vers l'infini (car la température de sortie tend vers zéro). Dans le paragraphe précédent, on
a trouvé que dans ces conditions M, tend vers une valeur finie également.

Pour une tuyére de fusée, cette vitesse de sortie correspond a I'impulsion spécifique (specific impulse)
que 'on désire maximale. En ré-écrivant cette relation

2y R
max — —T 5 4.53
B v —1M 0 (4.53)

on voit qu'un gaz de petite masse molaire et un rapport de chaleurs spécifiques v tendant vers 1 est
désirable.
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4.6 Quand un écoulement est-il compressible ?

Nous avons vu en introduction que le nombre de Mach est la grandeur caractéristique de la com-
pressibilité d’un écoulement. Au chapitre 2, le nombre de Mach a été interprété comme le rapport des
contraintes d’inertie et élastiques (2.83). Nous allons maintenant donner une autre interprétation au
nombre de Mach basée sur un raisonnement dimensionnel.

Pour cela, nous rappelons ’équation de conservation de la quantité de mouvement dans le cas des
hypothéses admises dans ce chapitre (4.9)

1
udu + ;dp =0, (4.54)
ou sous forme intégrée :
“2+/1d =C (4.55)
5 P p = C. .

En partant de conditions de réservoir avec pression py et densité pg, on suppose une petite accélération
de I’écoulement vers une vitesse u, une pression p = pg + dp, densité p = pg + dp, dont nous déduisons
que

2 N
u? +/ v (4.56)
2 po PO+ Op
Avec : ) 5}7/ D 5]9/ 6p/ 1 P 1 1
/Po po +0p’ /po Po ( Po ) Po Jpg po( ) Po ( )

nous en déduisons : )

u
dp ~ —Po- (4.58)

Par ailleurs, a partir de I'expression de la vitesse du son et du fait que ’écoulement est isentropique,
nous en déduisons :
5p ~ a’dp, (4.59)

ce qui par élimination de dp avec (4.58) nous permet d’écrire

o Ly (4.60)
Po 2

Ainsi, le nombre de Mach représente une mesure des variations relatives de masse volumique par rapport
aux variations du nombre de Mach (pour des petites valeurs du nombre de Mach), soit l'erreur qu’on
commet en considérant une masse volumique constante. Un fluide dont la vitesse est faible comparée a
la vitesse du son se comporte comme s’il était incompressible. Le nombre de Mach M apparaissant au
carré, cela implique qu’alors dp/pg n’est pas nécessairement petit. En fait si M est inférieur a environ
0.3, la variation de la masse volumique est de quelques pour cent et par suite ’on peut sans grande erreur
adopter ’hypothése d’incompressibilité pour 1’écoulement.

Il est possible de déduire ces résultats d’'une maniére rigoureuse.

L’équation de Bernoulli généralisée aux écoulements compressibles pour un gaz parfait (Equation
4.24) fournit une relation entre la pression et la vitesse

U2+7p_7po

- = =. 4.61
2 y=1p ~v—=1po (4.61)

La pression dynamique a perdu sa signification physique dans le cas de I’écoulement compressible, puisque
ce n’est plus la différence entre la pression totale et la pression statique. D’aprés les relations isentropiques,

on a 5
Po T—1, 9\
—=(14+—M . 4.62
p ( T ) e
On effectue un développement binomial de cette expression pour des nombres de Mach faibles

2_
P VO Ve A Clunte ) 5 V7 S

p 2 8 48 ’ (4.63)
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Po—Pp
%Pou2

0.9975 | 0.9901 | 0.9781

TABLE 4.3 — Effets de compressibilité de lair (7 = 1.4) en fonction du nombre de Mach.

que 'on peut ré-écrire

9 _
po=p+p 1M2+1M4+MM6+,,, , (4.64)
2 8 48
soit 1 9
P, -2 2 “ Va4
= —M“(14+-M —M R 4.
Po p+2 (+4 +24 +> (4.65)

Or, a ’aide de 'expression de la vitesse du son et de la définition du nombre de Mach,

WPz P w1,

— == = —pu”. 4.66
2 2 wp/p 2 (4.66)
on obtient . ) )
2 2 — 7 as4
= - 1+-M —M 4.
po=p+5pu <+4 + = + ) (4.67)
qui peut s’exprimer
1 2 P 1o, 2=7 14
= — — 14+-M —M R 4.68
Po =P+ 5p0u (p())( + Mo+ — + (4.68)
En utilisant .
/ )
L -1+ M , 4.69
L (147 (4.69)
et aprés un développement binomial
14 1o 7V
—=1-=-M —M ey 4.70
il en résulte la relation finale suivante
1 2 1 o, 2v—-1_
= - 1—--M —M R 4.71
Po=p+ 5ot ( 1 + o + ( )

Pour M = 0, on retrouve la relation de Bernoulli pour un écoulement incompressible. Le terme en
parenthése est donc un terme correctif & la relation de Bernoulli et donne une indication du degré de
compressibilité

1 2y —1
=1—-M*+="—M"+.... 4.72
4 + 24 + ( )

Po—p
%Pou2

On constate que pour les petites valeurs de M la correction est faible. Quelques valeurs du facteur
correctif pour quelques valeurs du nombre de Mach M sont données dans le Tableau (pour de l’air). La
convention est de négliger les effets dus a la compressibilité pour des nombres de Mach inférieurs a 0.3.

4.7 Mesures en écoulements compressibles et isentropiques

En écoulements compressibles et isentropiques (sans onde de choc), il est possible de mesurer la
pression totale pg, la pression statique p, ainsi que la température totale Ty. La connaissance empirique
de ces trois quantités permet alors ’évaluation du nombre de Mach, de la vitesse, et de la température
a travers l'utilisation des relations isentropiques.
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Le nombre de Mach est calculable a partir de la relation suivante (qu’on appelle équation du tube de
Pitot subsonique)

b

Une mesure de la température totale Ty permet d’en déduire la valeur de la température statique T'
a partir de

PN
Po _ (1 + 72M2) . (4.73)

TQ Y- 1 2
—=14+—M". 4.74
7=t (4.74)
Il est alors possible d’évaluer la vitesse
u= M+/yrT. (4.75)

Une manipulation de ces relations produit le résultat suivant

1 (50) ] . (4.76)

1
Sput =122 (4.77)

2yrTy

La pression dynamique locale vaut alors
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Chapitre 5

Ecoulements quasi-unidimensionnels
isentropiques permanents

Dans ce chapitre, nous allons étudier le cas d’écoulements quasi-unidimensionnels compressibles per-
manents de fluides idéaux. Les résultats obtenus seront applicables au cas d’un écoulement isentropique
dans une tuyére ou dans une soufllerie supersonique. Ils mettront en évidence les principes essentiels
permettant a I’écoulement de passer d’un régime subsonique & un régime supersonique (et viceversa).
Comme dans le chapitre précédent, nous faisons ’hypothése que le fluide est dénué de viscosité, et que
I’écoulement n’est pas soumis a des forces volumiques, au rayonnement et qu’il est adiabatique. Nous
verrons dans des chapitres ultérieurs qu’il existe des régimes d’écoulement dans une tuyére ot des ondes
de chocs peuvent apparaitre. De plus, & la sortie d’une tuyére, I’écoulement sera parfois dévié de sa tra-
jectoire et perdra ainsi sa configuration quasi-unidimensionnelle au profit d’un réseau d’ondes de détentes
et de choc.

FIGURE 5.1 — Veine d’essai d’une soufflerie supersonique (hepia, Genéve)

5.1 Equations de conservation quasi-unidimensionnelles

Considérons I’écoulement stationnaire d’un fluide parfait dans une conduite de section A variable
selon I'abscisse curviligne z située au centre de la conduite.

Si r(z) représente une mesure de la section telle que le rayon ou la demi-hauteur, et si ®(z) est le
rayon de courbure de la paroi, nous supposons dans cette approximation que

dr T
— 1 t — <1 1
. < e T < 1, (5.1)

Ces conditions peuvent évidemment étre satisfaites par un tube de courant (surface tubulaire, tangente
a une famille de lignes de courants) qui peut étre choisi comme infiniment petit. Ainsi, pour des lignes
de courants tridimensionnelles connues a priori, la théorie qui suit s’y appliquera.
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(._. r(x)

A= A(x)

FIGURE 5.2 — Parameétres d’une tuyére ou d’un tube de courant conduisant & I’hypothése d’un écoulement
quasi-monodimensionnel

Si les hypothéses 5.1 sont satisfaites, alors il est possible d’idéaliser I’écoulement réel tridimensionnel
par un écoulement quasi-monodimensionnel. Un tel écoulement quasi-monodimensionnel permet d’ad-
mettre les simplifications suivantes pour le champ de vitesse u = (u, v, w)

u=ulz,y,z) — u=u(x),
v=uv(z,y,2) — v=0, (5.2)
w=w(z,y,z) — w=0,

et pour les champs scalaires
p=p(x,y,2) — p=p),
p=plz,y,z) — p=p), (5.3)
e=ce(z,y,z2) — e=e(x), ’

T=T(z,y,2) — T=T(x).

Il est bien évident que la condition de variations faibles de la section selon ’axe de la conduite n’est
pas la seule condition qui permette d’idéaliser I’écoulement comme étant monodimensionnel. Pour des
fluides réels (avec viscosité), le profil de vitesse n’est pas uniforme & cause de Padhérence du fluide a la
paroi (écoulement dit de Poiseuille pour une conduite, Figure 5.3). Ainsi, I’hypothése d’un écoulement
monodimensionnel demande aussi que le fluide soit dénué de viscosité.

|
|

s —u(x)
—_—
—_— e
e —
—> ——
S _—>
—_—

FIGURE 5.3 — Idéalisation d’un écoulement réel par un écoulement quasi-unidimensionnel

5.1.1 Conservation de la masse

Pour un volume de contréle comme représenté sur la Figure 5.4, I’équation de conservation de masse
tridimensionnelle (3.1) s’écrit sous la forme

/@dVJr/puoﬁdS:O. (5.4)
v ot s

Pour un écoulement permanent et quasi-monodimensionnel, I’équation précédente devient

ou l'on a fait intervenir le fait que seule la composante de vitesse selon x intervient, que la pente de la
paroi est si faible que la vitesse radiale est nulle, et qu’il n’y a pas d’écoulement selon la normale a la
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paroi. En divisant par Az et en laissant tendre Ax vers zéro, on obtient

d
— (puA) =0. 5.6
2 (pua) (56)
Ax X+—
X—— X
i
i 7
. i —>
U i
x,? % : ﬁnyr% _ e
) : ’ P LW
A N i 2 vk
x—? : g
1 Ax

FIGURE 5.4 — Volume de controle

5.1.2 Conservation de la quantité de mouvement

Les hypothéses générales (fluide dénué de viscosité et écoulement sans forces volumiques) nous per-
mettent d’écrire I’équation de conservation de la quantité de mouvement tridimensionnelle (3.4) sous la
forme

/Va((;;u)d‘/+/s(pu~ﬁ) udS:—/SpﬁdS. (5.7)

Contrairement & l'intégrale de surface faisant intervenir la vitesse normale a la paroi u -, qui alors
s’annule sur les parois latérales de la tuyére, I'intégrale de surface de la pression doit étre considérée
méme sur les parois latérales. Pour un écoulement permanent monodimensionnel, on a alors pour la
composante selon z de la conservation de quantité de mouvement (en projetant selon x la force de
pression sur les parois latérales)

(PUQA);HM/Q - (PU2A)VAI/2 == pA)w-‘rAz/Q + (pA)w—dw/2 + Pa(Asvan/2 — Av—na/2), (5-8)

ot le dernier terme a été obtenu en supposant une variation linéaire de la pression sur les parois latérales
(pour Ax petit) et les principes élémentaires de ’hydrostatique pour la pression résultante. En divisant
par Ax et en laissant Ax tendre vers zéro, on obtient

d d dA
T (puAd) = ———(pA) +p—. (5.9)

En développant les dérivées selon x

d du dp dA dA

—(pud A—=-A— —p— +p—

udx(pu )+ pu dx =z P P

et en utilisant I’équation de conservation de masse d/dz(pud) = 0 (Equation 5.6), ’équation de conser-
vation de quantité de mouvement devient

(5.10)

du  dp
pu@ =0
Il est & remarquer que cette relation ne fait pas intervenir la section de la tuyére, contrairement a
I’équation de conservation de masse. Cette équation est en fait la version unidimensionnelle de I’équation

d’Fuler pour un écoulement permanent.

(5.11)
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5.1.3 Conservation de I’énergie

Les hypothéses générales (écoulement permanent, adiabatique, sans rayonnement, et fluide dénué de
viscosité) permettent d’obtenir d’une maniére analogue

dho
— =0 5.12
0, (5.12)

ol hg est Penthapie totale hg = h + 1/2u>.

5.1.4 Reésumé des équations pour un écoulement quasi-unidimensionnel per-
manent isentropique

d(pud) _
de
ud—u _ _dp (5.13)
P dx dx
hg = const

5.2 Ecoulement dans un tube de section variable

5.2.1 Effets de la variation de section

Etant donné que les variables ne dépendent que de z, les équations de conservation peuvent s’écrire
sous la forme différentielle suivante

— Conservation de la masse

d(pud) =0 — %—I—%—l—% =0, (5.14)
— Conservation de la quantité de mouvement
pudu = —dp, (5.15)
— Conservation de I'énergie
dh + udu = 0. (5.16)

Nous allons éliminer la masse volumique entre les différentes relations, et en particulier dans (5.14). Pour
cela, réécrivons I’équation de conservation de la quantité de mouvement (5.15) sous la forme

d—p*@@:fudu

— , 5.17
p dpp (5:17)

puis en se servant du fait que I’écoulement est isentrope, nous avons
d 19)
P _ (Y _ 2 (5.18)
dp op)

ce qui nous permet d’écrire (5.17) sous la forme

d d
& _ a2—p = —udu, (5.19)

p P
dont nous déduisons a ’aide de la définition du nombre de Mach

dp_ _udu _“22d“ EYELY (5.20)
p a au u
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La substitution de (5.20) dans (5.14) permet ensuite d’aboutir a

dA du
== (M2 — 1) - (5.21)

dont il est possible de déduire les relations

et " )
M- -1 M
L

L’expression (5.21) traduit la relation entre la variation de section et la variation de vitesse qui dépend
du nombre de Mach. De maniére analogue, on obtient

da vy—1_ 5du
Y 5.24
a 2 w’ (5-24)

ainsi qu’une relation déja obtenue dans le chapitre précédent

1 M
G (5.25)

_ Lo
u 1+%TMWM

Ceci nous permet de distinguer les quatre cas réprésentés a la Figure 5.5.

—_

M <1 p.p.T.a™\ M>1 p.p.T.a™\
_— _— >
Subsonique M,M /l Supersonique u,M /|

/ \
//////// \\\\\\\\

M<1 p:paT:a/‘ M>1 papaTaa/‘
_— _—
Subsonique Ll,M \‘ Supersonique u,M \‘

- T

FIGURE 5.5 — Comportement de 1’écoulement dans une tuyére en fonction du nombre de Mach et de la
géométrie

Ecoulement subsonique Lorsque ’écoulement est subsonique (M 2 1) < 0, une augmentation de
section entraine une diminution de la vitesse et inversement. Ainsi, pour un écoulement subsonique
compressible, pour augmenter la vitesse, il faut un canal convergent et pour diminuer la vitesse, le canal
doit étre divergent.

Ecoulement supersonique Dans ce cas, (M 2 1) > 0. Par conséquent, une augmentation de vitesse
est associée & une augmentation de section. De méme, une diminution de vitesse est associée & une
diminution de surface. Ainsi, pour un écoulement supersonique, pour augmenter la vitesse, il faut un
divergent, et pour la diminuer, il faut un convergent. On a un comportement inverse par rapport aux

écoulements subsoniques.
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Ecoulement sonique On a alors dA = 0, méme si ’on a une variation de vitesse. Cela correspond a
un extremum local de la distribution de section en fonction de z. Physiquement, cela correspond a une
section minimale. Cette section minimale est le col de la tuyére comme on le montre plus loin. Quelque
soit I’écoulement supersonique qui passe dans le divergent de la tuyére, I’écoulement sera toujours sonique
au col, c’est-a-dire qu’a cet endroit M = 1. L’inverse est vrai, si I’on veut ralentir de maniére isentrope
un écoulement supersonique vers un régime subsonique, on doit d’abord ralentir ’écoulement dans un
convergent, et, dés que le régime sonique est atteint, on doit continuer & le décélérer vers des vitesses
subsoniques dans un divergent. On a alors un diffuseur.

Les différents comportements de 1’écoulement en fonction de la variation de section et du nombre de
Mach exprimés par les relations peuvent étre résumés dans le tableau ci-dessous.

dAJA = - ¥ ¥
M <l >1 <1 >1
du/u + - — +
aM/M  + - =t
dp/p -+ + -
dp/p -+ + -
/T -+ o+ -
da/a - + + -

TABLE 5.1 — Comportement des écoulements quasi-monodimensionnels.

Quelques remarques s’imposent.
* Les variations de vitesse du/u suivent toujours les variations du nombre de Mach dM /M.

* Les variables thermodynamiques p, T, p, et a = \/yrT varient dans le méme sens, opposé a celui
de M et u.

5.2.2 Conditions au col

Afin que I’écoulement passe de maniére continue du régime subsonique au régime supersonique, il
doit exister un point (une section) pour laquelle le nombre de Mach doit étre égal a 1. Nous avons vu
précédemment que cette section correspond & un extremum local de la section de sorte que dA = 0.
Considérons la relation (5.23) que nous écrivons sous la forme

1dM |14 25 M2 1 dA (5.26)
M dr A M2 —1dx’ '
Nous nous intéressons au cas ot M — 1 et % — 0. Nous appliquons alors la régle de ’'Hospital pour
déterminer
1aM [14 250 me a4
lim _ = —2 —dz__ (5.27)
M—1,24 0 M dz A aM
' Te M1 2 MT
x

dont nous déduisons facilement la relation

. dM\? 1
lim —_ = —
M—1,44 0 \ dx 2

Y dx

(5.28)

L+ 3= M? 1 PA (149)d?A
A . dx?2 4A  dx?’

Pour qu’une solution physique existe, le membre de droite doit étre positif. Il faut donc, 1+ étant positif,
2
que % le soit aussi. Ceci correspond donc bien a4 un minimum de la section. Par suite, le nombre de

Mach ne peut atteindre la valeur de 1 qu’a la section minimum de la tuyére, c’est-a-dire au col. Ainsi,
le fluide est accéléré du repos dans le convergent (dA < 0), passe & Mach M = 1 au col (dA = 0), et
continue a accélérer dans la partie divergente (dA > 0).
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5.2.3 Relation entre une section et la section au col

Supposons que le rapport de pression entre la pression de réservoir et la pression de sortie soit telle
que I'écoulement soit sonique au col. La section au col sera notée par la suite A, puisque ’écoulement
au col est aux conditions soniques. De la méme maniére, le nombre de Mach et la vitesse au col sont
notés par M, et u,. Comme 1’écoulement est sonique au col, ’écoulement dans cette section vérifie les

relations
M=M,=1 et Uy = . (5.29)

Dans toute autre section d’une tuyére, les variables sont notées A, M et u. L’équation de conservation
de la masse sous forme intégrale écrite entre la section au col et une quelconque autre section devient

sl Ay = puA, (5.30)
or, la relation (5.30) s’écrit aussi sous la forme

A Pl Pepots (5.31)
A, p U  pop u

La masse volumique pg totale est constante dans tout I’écoulement isentrope. Rappelons la relation
isentrope

-1
P _ <1 il M2> , (5.32)
p
et son expression aux conditions soniques
1/(v=1)
M 2
Pe () , (5.33)
Po v+1
ainsi que la définition de M, et son expression fonction du nombre de Mach M

v+l

2 M?

(2o 2 .
Ay 1+’Y_ M2

2

En élevant (5.31) au carré, nous faisons apparaitre

() =(3) =() () &

de maniére a substituer les relations (5.32), (5.33) et (5.34) pour obtenir

2 2/(v-1) o 2/(y=1) (14 =12
AV (2 1+ 2 e e s (5.36)

qui se simplifie sous la forme

A B 1 2 v — 1 ) (v+1)/2(y=1)

Cette relation est trés importante et est illustrée en Figure 5.6. Le nombre de Mach dans une section
quelconque de la tuyére est une fonction du rapport de la section locale & la section au col aux conditions
soniques. Comme A < A, n’est pas physiquement possible, on a toujours la condition A > A,. D’autre
part, on a deux valeurs de M pour chaque rapport de section. Lorsque M est subsonique le rapport A/A,
décroit et tend vers 1. Lorsque M est supersonique le rapport A/A, croit.

En introduisant la relation isentrope (4.31) dans (5.37), il vient

1/2
A*:( 2 )1/2< 2 )—(wl)/m—l) (p>1/v 1_(p)7—1/7 / 535
A v—1 T+1 Po Po ’ '

P
Po

qui nous permet de remarquer que ‘2* prend sa valeur maximale égale & 'unité pour la valeur de p% =
correspondant a M = 1.
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Ecoulement dans un tube de section variable

4r p
A L ) /
|
A* | /-/
i /
\ /
£l
L /
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1 e 18 =
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FIGURE 5.6 — Rapport de la section locale a la section au col en fonction du nombre de Mach pour
v=14.

5.2.4 Débit-masse

par la relation

L’équation de conservation de la masse pour les écoulements quasi-monodimensionnels exprime la
conservation du débit-masse dans chaque section du tube. En notant le débit-masse par m, il s’exprime

m = puA,

(5.39)
que nous aimerions exprimer en fonction du nombre de Mach et du fluide (). Pour cela, nous faisons
apparaitre, dans la relation précédente, les grandeurs

m=-——apyA = —H\/'W‘TpoA, (5.40)
poa a
ce qui nous permet d’aboutir a la formulation
. P T Po P T 1
m=—M\/yTo=—FA=7M—1] =1/ Do, 5.41
Po To rTo po V To V yrilo (5.41)
soit
T
=ML [ 204 (5.42)
po V Ty ao
En se servant des relations isentropes pour exprimer les rapports de pression et de température, nous
obtenons ) )
—1_ L\ 7 —1.,\ 71
=M1+ 122 1+ 27 20m2) " oA, (5.43)
2 2 ag
ainsi que
1 .\
=y M (1 + 7M“') Do 4, (5.44)
2 (o))
qui est aussi utilisée sous forme adimensionnelle
apm 7 2 T
— =M1+ ——M .
pA ! < T )

(5.45)
Si nous choisissons comme référence les conditions soniques au col, nous avons M =1 et A = A, ce qui
implique

; 1\ " 65D 9 \ 65D
apm v - v v

= 1 —_— —
pod, ! ( T ) 7 ( ) 7

5.46
v+1 ( )
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ou encore

y+1
" N =1\ T6-D (y=1.4)
=1+ — = .58. 4
PvE < + 5 ) 0.58 (5.47)

5.3 Ecoulement dans une tuyére

5.3.1 Tuyére convergente et blocage sonique

L’écoulement dans une tuyére convergente est engendrée par une pression totale py régnant en amont
de la tuyére. La configuration de I’écoulement va dépendre de la pression ambiante p, & la sortie de la
tuyére, que ’on nomme également pression arriére ou pression en aval (back pressure en langue anglaise),
d’oti 'indice «. Cette pression peut varier de la valeur p, = pg (sans écoulement) jusqu’au vide (p, = 0).
La Figure 5.7 illustre les différents cas en représentant le rapport de la pression p dans la tuyére et la
pression totale pg en fonction de la coordonnée axiale de la tuyére et des différentes valeurs de la pression
arriére (a, b, ¢, d).

FIGURE 5.7 — Distribution de pression dans une tuyére convergente et une tuyére convergente-divergente.

Quand la pression arriére a une valeur située comme dans le cas b, entre le cas a et ¢, c’est a dire
entre p, et pp, un écoulement subsonique se produit dans la tuyére. Par exemple, pour p,/po = 0.65, les
tables isentropiques pour 7 = 1.4 fournissent un nombre de Mach M = 0.81 en sortie de tuyére.

Quand la pression arriére est égale a p, (cas ¢), 'écoulement est sonique en sortie de tuyére (M =1
etc.). Dans le chapitre précédent, nous avons vu que pour v = 1.4, p./pp = 0.5283 (cette valeur se
retrouve dans les tables isentropiques pour M = 1).

Si la pression arriére est réduite au dessous de cette valeur p, (cas d), 'écoulement dans la tuyeére
restera inchangé, étant donné que le nombre de Mach maximal dans une tuyére convergente est égal a 1
et celui-ci se produit ou la section est minimale, donc au col (sortie de tuyére). La détente se produira
alors a 'extérieur de la tuyére (par des ondes de détentes).

Lorsque I’écoulement devient sonique au col, aucune perturbation ne peut remonter dans le convergent.
Par conséquent, I’écoulement dans le convergent ne communique plus avec I’écoulement en aval du col et
n’a aucun moyen de savoir que la pression de sortie continue & diminuer. Physiquement, ce phénoméne
est facile & comprendre du fait qu’aucun message (se propageant a la vitesse du son) ne peut remonter
I’écoulement si en un endroit la vitesse est égale a la vitesse du son.
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Selon (5.47), le débit-masse ne dépend que des conditions régnant dans le réservoir et non pas de la
pression arriére a condition toutefois que I’écoulement soit sonique au col. Ainsi, pour une valeur de pg
constante, le débit-masse sortant de la tuyére n’augmente pas en baissant la pression arriere (Fig. 5.7).
Ce phénomene constitue Veffet de blocage sonique (choked flow) d’un écoulement compressible.

5.3.2 Tuyére convergente-divergente ou de Laval

L’écoulement dans une tuyeére de Laval engendré par une pression totale py régnant en amont de la
tuyeére se présente comme indiqué sur la Figure 5.7 en fonction de la pression variable p, régnant en aval
de la tuyére.

Si p,, est suffisamment élevée, ’écoulement demeure subsonique tout le long de la tuyére (cas a et b).

Dauns le cas ¢, le col devient sonique au moment ou la pression arriére a une valeur particuliére (égale
a celle du cas ¢). L’écoulement est isentropique tout le long de la tuyére, et en particulier, subsonique. Le
fait que I’écoulement soit subsonique dans la parie divergente est confirmé par la tendance de la pression
(qui augmente) dans la partie divergente, qui suit celle de la section (qui augmente également).

Les cas d et e étant mis & I’écart pour 'instant, quand la pression arriére atteint une valeur égale a
celle du cas f, ’écoulement (isentropique) est alors supersonique dans la partie divergente, tout en restant
subsonique dans la partie convergente et sonique au col. Le cas f est appelé point de fonctionnement
(design operation) car la globalité de I’écoulement dans la tuyére et en sortie est isentropique et sa vitesse
de sortie est maximale (un des objectifs des tuyéres, en particulier celles des propulseurs supersoniques).

Entre les cas c et f, ’écoulement est caractérisé par la présence d’ondes de choc dans la tuyére et a la
sortie. Ce phénoméne sera examiné dans des chapitres ultérieurs. Pour des pressions arriéres inférieures
a celles du cas f (cas g par exemple), des ondes de détente se forment en sortie (ce phénoméne sera
également étudié dans des chapitres ultérieurs.



Chapitre 6

Introduction aux ondes de choc et de détente

6.1 Introduction

Une onde de choc (shock wave en anglais) est une région de 1’écoulement ou de fortes variations des
grandeurs physiques apparaissent sur de trés faibles longueurs caractéristiques. L’ordre de grandeur de
I’épaisseur d’un choc peut varier selon les conditions de travail : de quelques “libre parcours moyen” des
molécules d'un gaz, soit de 1'ordre du micron (10~%m), jusqu’a quelques millimétres (et parfois méme
plus). Dans les cas les plus communs, ces zones sont trés minces par rapport a la taille caractéristique de
I’écoulement, et nous pouvons les idéaliser comme des surfaces de discontinuité dans I’espace. Par suite,
les grandeurs physiques sont elles-mémes discontinues & travers cette surface, ce qui n’est évidemment
pas le cas dans la réalité. On rencontre plusieurs noms attribués a cette surface de discontinuité : front
de choc, onde de choc, ou choc tout simplement. Les ondes de chocs furent observées pour la premiére
fois par Mach lui méme en 1887. Son fils, Ludwig, quantifia la surpression générée par une onde de choc
en utilisant un instrument qui de nos jours prend le nom d’interférométre de Mach-Zehnder.

FIGURE 6.1 — Image prise par Ernst Mach (hiver 1888) d’une onde de choc devant un projectile super-
sonique (les traits verticaux sont des fils permettant la synchronisation de la prise d’image). Cing ans
plus tard, I'image de droite fut prise par son fils Ludwig avec un interféromeétre de Mach-Zenhder pour
quantifier le ressaut en pression.

Un choc est associé a une compression (augmentation de la pression) pour les fluides les plus communs.
De ce fait, la terminologie choc de compression est généralement redondante. Cependant, il a été montré
qu’un choc de raréfaction ou choc de détente (rarefaction shock) est possible dans des cas ésotériques
comme pour un fluide autour du point critique ou un plasma. Le critére thermodynamique d’existence
de chocs de raréfaction sera présenté dans ce qui suit.

Les chocs peuvent apparaitre comme stationnaires ou en mouvement selon le référentiel choisi. Par
exemple, dans le référentiel d’'un avion supersonique, le choc apparaitra comme stationnaire. Dans le
référentiel terrestre, le choc sera en mouvement. Un autre exemple de choc en mouvement relatif est
celui créé par une explosion (ot l'observateur est fixe par rapport a l’explosif) ou dans un tube a choc
par rupture d’'un diaphragme séparant initialement deux gaz & des pressions différentes.
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FIGURE 6.2 — Exemple d’une onde de choc en mouvement (pris du film BBC "Invisible Worlds" 2010
de Richard Hammond) pour un observateur fixe par rapport a lexplosif.

FIGURE 6.3 — Exemple d’une onde de choc fixe par rapport a 'observateur (ondes de chocs autour d’une
entrée d’air conique & Mach 2.4, hepia, Genéve).
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Onde de choc
droite

M, <1
p.>pL>1.p,>p
Pos < Py,

M >1
P 1. p

FIGURE 6.4 — Exemples de chocs droits (fleche rouge), donc perpendiculaires a 1’écoulement (fleche
bleue), dans le sens horaire a partir de la photo en haut et a gauche : jet supersonique débouchant sur
une entrée d’air supersonique (supersonic inlet) ; onde de choc a l'intérieur d’une tuyére supersonique,
provoquant une séparation de la couche limite ; onde de choc droite en sortie d’une tuyére supersonique
sur-détendue, visualisée par Schlieren ; sortie de la tuyére sur-détendue du Space Shuttle Main Engine
(SSME), avec la présence d’une onde de choc droite en forme de disque, appelé disque de Mach (générant
en aval une hausse substantielle de la température des gaz).

Plusieurs types de chocs peuvent apparaitre mais nous pouvons d’ores et déja distinguer deux caté-
gories : les chocs droits et les chocs obliques.

6.1.1 Chocs droits

Un choc droit (normal shock wave) est par définition normal & I’écoulement (Figure 6.4). Un choc droit
est caractérisé par le fait que I’écoulement en aval est toujours subsonique (nombre de Mach inférieur
a 1). Comme le choc est un phénomeéne de compression, la pression en aval est supérieure a la pression
en amont (il en est de méme de la température et de la masse volumique). Par contre, la pression
totale diminue : c’est cette“perte de charge” qui est responsable de la réduction de rendement dans les
entrées d’air supersonique. C’est également cette perte de charge que doit combattre le compresseur dans
une soufflerie supersonique a circuit fermé. La chute de pression totale est associée a une augmentation
de Ventropie (I’écoulement traversant un choc n’est pas isentropique). Ces chocs droits se retrouvent
également a Pintérieur des tuyeres (avec des phénomeénes de décrochage de couche limite) ou en sortie
de tuyére (sous forme de disque de Mach).

6.1.2 Chocs obliques

Les chocs obliques (oblique shock waves) sont tels que la vitesse en amont n’est pas orthogonale
a la surface du choc. La Figure 6.5 montre la réalisation d’un choc oblique attaché, bi-dimensionnel,
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résultant d’un changement brusque de direction de la paroi. Ce dispositif est utilisé dans des rampes de
compression d’entrée supersonique de réacteurs.

Cette morphologie se retrouve pour des profils géométriques en forme de diédre, générant ainsi des
chocs obliques de part de d’autre du profil (Figure 6.6). En 3D, les chocs obliques ont une morphologie
conique.

Une remarque importante concerne la valeur du nombre de Mach en aval du choc : I’écoulement n’est
pas nécessairement subsonique et peut étre supersonique. Par contre, les propriétés thermodynamiques
(pression, température, et masse volumique) se comportent de maniére similaire & une onde de choc
droite (toutes augmentes, tandis que la pression totale décroit).

D’une maniére générale, méme pour des configurations complexes d’ondes de choc, il est possible
localement d’identifier un choc & un choc droit ou un choc oblique. Par exemple, un choc courbe (bow
shock) autour d’un corps non profilé symétrique est assimilé localement & une onde de choc droite au
voisinage du point d’arrét, et & une onde de choc oblique aux autres points.

Onde de choc

oblique M, <M,
p>pL>1Lp>py
Po> < Po,

M, >1 W

i1 py

FIGURE 6.5 — Choc oblique sur une rampe de compression.

m== Choc oblique

FIGURE 6.6 — Exemples de chocs obliques : ondes bi-dimensionnelles sur un diédre & Mach 2.4 (hepia,
Geneéve) ; ondes coniques sur une ogive & Mach 1.7 ("Gallery of Fluid Motion" de Van Dyke); onde
de choc courbe (bow shock) axisymmétrique dans un écoulement de dioxyde de carbone a Mach 2.77
("Gallery of Fluid Motion" de Van Dyke).

6.1.3 Ondes de compression et ondes de détente

En dehors des chocs, a travers lesquels la pression augmente de maniére discontinue, les écoulements
supersoniques peuvent également présenter des ondes de détente (expansion waves) ou des ondes de
compression (& ne pas confondre avec des chocs), ot la pression décroit ou croit de maniére continue.

L’image suivante (Figure 6.7) montre un schéma d’une onde de détente générée lors du changement
progressif ou brusque de direction d’une paroi plane : il s’agit ici d’une rampe d’expansion (ou de
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détente). Dans le cas de l'aréte vive, la détente autour de l'aréte se fait par une onde centrée, définie
par un faisceau de lignes (ou ondes) de Mach rectilignes, formant ce que l'on appelle un éventail de
Prandtl-Meyer (Prandtl-Meyer fan). L’écoulement est uniforme jusqu’a l’aréte, avec un nombre de Mach
M et la premiére onde de Mach doit étre rectiligne, inclinée de ’angle p1. La derniére ligne de Mach est
inclinée d’un angle po avec un nombre de Mach Mas. Entre ces deux lignes limites, on obtient un éventail
continu de lignes dont l’angle varie continuement de p1 & po. Dans le cas d’une courbure progressive de
la paroi, I’éventail est maintenant distribué le long de la paroi au lieu d’étre centré. Les éventails centrés
se retrouvent en particulier sur le bord d’attaque de profils supersoniques & aréte vive (Figure 6.7).

Contrairement aux ondes de chocs, le nombre de Mach augmente en traversant des ondes de détente (et
reste donc supersonique), tandis que pression, température, et masse volumique diminuent. L’écoulement
est isentropique a travers une onde de détente, et ainsi la pression totale reste inchangée.

M, >1
b4 p

M, >M,
P <p. L <L, p,<p
Poy = Po

Faisceau continu d’ondes de détente

(ondes de Mach) \
”
P

® /,

M, >1

pL.p
M,>M,
p<p. L <, p,<p
Poy = Pos

FIGURE 6.7 — Ondes de détentes en forme d’éventail (fan).

D’une maniére analogue, des ondes de compression peuvent se former autour d’un corps dont la
géométrie a été adéquatement étudiée. Un exemple en est donné sur la Figure 6.8. Bien que les rampes
de compression continue soient préférables d’un point de vue énergétique (la pression totale restant
inchangée) par rapport aux compressions discontinues (chocs, pour lesquels la pression totale chute), il
est plus simple de concevoir et d’opérer des rampes de compression générant des ondes de chocs obliques.
Une solution intermédiaire (présence de chocs obliques mais réduction de la perte de pression totale) est
une rampe de compression & plusieurs chocs obliques, mais d’intensité moindre.

6.1.4 Ondes de choc et de détentes dans d’autres contextes

Finalement, il existe des systémes ou des ondes de choc peuvent apparaitre méme en dehors du
contexte de la mécanique des fluides compressibles. La Figure 6.9 propose quelques exemples, allant du
traffic routier, aux écoulements hydrauliques a surface libre (riviéres), pour lesquels on parle alors de res-
saut hydraulique (hydraulic jump). Ces systémes peuvent étre modélisés par des équations qui présentent
les mémes caractéristiques que les équations décrivant le comportement des fluides compressibles.
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Faisceau continu d’ondes de compression
(ondes de Mach)

M, <M,
P> pi L>1, py > py
Po1= Po>

@

M, >1
1. p

FIGURE 6.8 — Ondes de compression sur une forme géométrique concave permettant une compression
progressive, sans ondes de choc, & Mach 2.1 ("Gallery of Fluid Motion" de Van Dyke).

FIGURE 6.9 — Exemples d’ondes de chocs dans des situations ol n’'intervient pas la compressibilité des
fluides. Sens horaire, en partant de la gauche : ressaut hydraulique dans un évier ; onde de choc dans un
traffic routier (Sugiyama et al., 2008) ; ressaut hydraulique sur la riviére Severn (Dyke, 1982) ; illustration
métaphorique de la propagation d’une onde de choc (Shapiro, 1953).
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6.2 Formation d’ondes de choc et de détente

La formation d’ondes de chocs est un phénomeéne complexe qui se produit dans le temps. Nous allons
décrire ’évolution initiale d’une onde de compression et suggérer sa tendance & devenir une onde de
choc. La formation méme d’une onde de choc n’est pas facilement analysable avec des moyens de base
et requiert des outils performants (souvent numériques du fait du caractére non linéaire du phénomeéne).
Par conséquent, nous nous limiterons & des considérations physiques dans une premiére approche, et dans
un deuxiéme temps, nous présenterons une approche mathématique simplifiée de 1’évolution initiale de
l'onde de pression. En contrepartie, la formation d’'une onde de détente est bien analysée par ces deux
approches.

Ces approches nous permettront de (i) comprendre les raisons pour lesquelles seuls les chocs de
compression sont possibles (les chocs de détente ou de raréfaction étant impossible pour des fluides
habituels), et (ii) déterminer les phénomeénes qui provoquent un accroissement de I’entropie a travers une
onde de choc (alors que I'onde de pression initiale est isentropique).

6.2.1 Approche pragmatique : piston accéléré dans un fluide au repos

L’approche traditionnelle pour 1’étude de I’évolution temporelle des ondes de pression consiste a
considérer une onde de compression générée par le mouvement accéléré d’un piston dans une conduite
unidimensionnelle. Initialement, le fluide est au repos dans la conduite. Le piston accélére vers la droite,
et on modélise 'accélération par une succession de sauts en vitesse se produisant & des intervalles de
temps réguliers, avec un piston se déplacant & vitesse constante entre chaque impulsion. Il s’agit donc
d’abord d’analyser comment se comportent les ondes de pression générées a chaque impulsion.

Formule d’Allievi

Le schéma sur la figure ci-dessous (Figure 6.10 illustre un front d’onde de compression généré par une
impulsion du piston et se propageant dans un fluide au repos. Derriére ’onde, le fluide est en mouvement
avec une vitesse d’intensité infinitésimale du générée par le piston, se déplacant avec cette méme vitesse.

Surface de

contrdle Front d’'onde

\By au repos

J Vitesse du front : :

u d’onde a—du | a
> > < Jl§ *
1
a Fluide o B
au repos i J _:

p+dp p+dp

> L
rd 7z

FIGURE 6.10 — Onde de pression générée dans une conduite et représentation dans un référentiel fixe
par rapport a 'onde.

L’équation de conservation de quantité de mouvement en version intégrale appliquée & une surface de
controle englobant 'onde de pression dans un référentiel fixe par rapport a 'onde (Figure 6.10) conduit
a la relation suivante

Alp— (p+ dp)] = pAal(a — du) — dl, (6.1)
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ou A est l'aire de la section de la conduite et p la masse volumique du fluide traversé par 'onde. Apreés
simplification, on obtient 1’équation d’Allievi (ingénieur Italien, 1856-1941)

dp = padu. (6.2)

Cette équation, aussi connue sous le nom d’équation du coup de bélier (water hammer equation) repré-
sente le saut en pression de part et d’autre d’'une onde d’intensité infinitésimale en fonction de sa vitesse
de propagation et du saut en vitesse de I’écoulement. Il est & remarquer que dans un référentiel fixe par
rapport a 'onde, la vitesse de ’écoulement décroit en traversant 'onde. Cette équation a été largement
appliquée dans le domaine hydraulique pour la caractérisation des "coups de bélier" causés par des fer-
metures brusques de vannes. La validité de cette relation dans le domaine des coups de béliers repose
sur les faibles vitesses d’écoulement de liquide dans les conduites par rapport & la vitesse de propagation
des ondes de pression (vitesse égale la vitesse du son, comme on le verra ci-aprés).

Utilisation de I’équation de conservation de masse sous forme intégrale sur la surface de contréle de
la Figure 6.10 meéne au résultat suivant

pa = (p+dp)(a — du), (6.3)
ou p + dp est la masse volumique du fluide du c6té comprimé, conduisant a

dp _du

i (6.4)

Combinant ce résultat avec I’équation d’Allievi donne le résultat attendu

ot le rapport dp/dp a été remplacé par une dérivée partielle a entropie constante du fait des variations
infinitésimales de la pression et de la rapidité du processus de compression, deux caractéristiques qui sont
indicatrices d’un processus réversible et adiabatique. Ainsi, 'onde de pression infinitésimale se propage
a la vitesse du son du fluide qu’elle traverse.

Description physique de 1’évolution de ’onde

Sur la Figure 6.11, le piston subit deux impulsions successives vers la droite dans une conduite unidi-
mensionnelle contenant initialement un fluide au repos. Une premiére fois, sa vitesse passe impulsivement
de 0 & du et est maintenue a cette vitesse pendant dt, une deuxiéme fois, sa vitesse passe de du & 2du.
L’évolution des deux ondes est alors suivie dans le temps. Le fluide dans la conduite est alors séparé en
trois zones : (i) zone (1) ou le fluide est encore au repos; (ii) zone (2) ou le fluide a été traversé par la
premiére onde et se meut avec une vitesse du vers la droite; (iii) zone (3) entre le piston et la deuxiéme
onde, qui a été traversée par les deux ondes et se meut vers la droite avec la vitesse du piston 2du.

La premiére onde se propage avec la vitesse du son aj, basée sur la température dans le fluide au
repos que l'onde traverse. Dés le passage de cette premiére onde, le fluide acquiert une vitesse du. De
plus, comme il y a eu une légére compression de dp, la température du fluide derriére 'onde (zone 2)
subit également une hausse en température de dT' (I’écoulement est isentropique).

La deuxiéme onde va “surfer” un fluide déja en mouvement avec la vitesse du. De ce fait, la vitesse
absolue de 'onde dans le référentiel de la conduite va étre égale a as + du, ol as est la vitesse du son
dans la portion de fluide située entre les deux ondes. Or, la température de cette portion de fluide a
augmenté de dT', et ainsi la vitesse du son dans cette zone est supérieure a a; (dans un référentiel fixe
par apport au fluide).

I en découle de ce scénario que la deuxiéme onde (se déplacant a la vitesse as + du, avec ag > ay) va
rattraper la premiére onde (se déplagant a la vitesse a;). A un certain instant, il y aura coalescence des
deux ondes.

Si les impulsions du piston sont répétées plusieurs fois, avec un accroissement de la vitesse de du a
chaque impulsion, on obtient un mouvement uniformément accéléré du piston pour des impulsions du
et des temps de parcours dt infinitésimaux. Les ondes de pression isentropiques successives rattrapent
les ondes devant elles (suite & un accroissement de la vitesse du son ET de leur vitesse de “surt”) pour
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FIGURE 6.11 — Ondes de compression (& gauche) et de détente (& droite) générées par deux impulsions
successives d’un piston, vers la droite pour la compression et la gauche pour la détente.

former finalement une seule onde de pression avec une différence de pression non plus infinitésimale. Du
fait des grandes différences de pression et de température se produisant de part et d’autre de I'onde sur
une petite distance, I’écoulement n’est plus isentropique. Des phénoménes complexes faisant intervenir
la viscosité et un transfert de chaleur stabilisent alors cette onde en une onde de choc. La vitesse de cette
onde de choc n’est pas la vitesse de la premiére onde ni de la derniére : sa vitesse est déterminée par
I’équation de conservation de quantité de mouvement qui fait intervenir la vitesse finale du piston ainsi
que le ressaut en propriétés thermodynamiques de part et d’autre du choc.

Il est & remarquer qu’un phénomeéne similaire se produit avec des vagues de gravité sur la surface d’un
liquide. La vitesse de propagation des ondes est proportionnelle & la hauteur des différentes parties de la
vague (une partie plus haute étant plus rapide qu’une partie plus basse), et de ce fait les parties hautes
de la vague rattrapent les parties basses de la vague, pour donner finalement naissance aux “rouleaux”
(breakers) des surfeurs. Dans le cas des écoulements compressibles, il ne peut y avoir un rouleau car
une méme partie de 'onde ne peut avoir deux pressions différentes (Figure 6.12). Une onde de choc se
produit en contrepartie.

Si maintenant, le piston se retire vers la gauche, le phénoméne inverse se produit. La pression diminue
progressivement en proximité du piston, et les ondes successives voient leur vitesse diminuer du fait que
la vitesse du son décroit avec la pression et le fluide sur lequel ces ondes surfent se déplacent maintenant
dans le sens contraire. Ainsi, les ondes ne rattrapent jamais celles produites en premier : il n’y a pas
formation d’ondes de choc et I’écoulement reste isentropique éternellement. On a alors une onde de
détente (Figure 6.11 et Figure 6.12).

Analyse de I’évolution de 1’onde

Les arguments descriptifs de la section précédente peuvent étre mis sous forme analytique simple.

On considére une onde de pression continue se deplagant vers la droite, comme schématisée sur la
Figure 6.13. En deux points proches, les propriétés de I’écoulement différent par du, dp, dT, dp, da, etc.
Les parties respectives de 'onde passant par ces points ont une différence de vitesse d’onde d’intensité
du,,, ot 'indice w dénote 'onde (wave en anglais). L’analyse est similaire a celle de la section précédente,
ou les variations continues des propriétés peuvent étre discrétisées en variations infinitésimales. Comme
précédemment, on fait I’hypothése que 1’écoulement est isentropique. Ainsi, chaque portion d’onde se
propage a une vitesse égale a la vitesse du son locale du fluide qu’elle traverse (dans le référentiel du
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FIGURE 6.12 — Evolution d’une onde de pression : onde de compression, devenant un choc; onde de
détente, restant isentropique.
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FIGURE 6.13 — Analyse de ’évolution de l'onde.
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fluide). Dans un référentiel fixe par rapport a la conduite, la vitesse de 'onde est alors égale a
Uy = U+ a, (6.6)
alors que la vitesse de 'onde adjacente est égale &
Uy + dtyy, = u + du + a + da, (6.7)

d’out il découle que
du,, = du + da. (6.8)

L’objectif est de savoir si des ondes adjacentes se déplacent & des vitesses similaires ou différentes. On

forme alors le rapport
du du da
— = — 4+ —. (6.9)
dp  dp dp
Or, la formule d’Allievi nous dit que
d 1
. (6.10)
dp  pa
La variation de la vitesse du son a avec la pression p & entropie constante (qui est notre cas) a été obtenu
dans le Chapitre 4, Equation 4.19, que nous rappelons ici (avec v = 1/p)

8@2 aa 0,4 82’0
<5p>s - <6p>s = [2113 <ap2)s - 1} : (6.11)

ou, comme dans le Chapitre 4, on peut introduire la dérivée fondamentale de la dynamique des gaz
(fundamental gasdynamic derivative), dénotée par le symbole T,

a* (0%
r=g3 (W)s’ (6.12)
ce qui donne
da v
— | ==(T-1). 1
(5) ~2e-v (6.13)

La variation de la vitesse d’onde avec une variation de pression s’obtient alors facilement en insérant
I’équation 6.13 et I’équation 6.10 dans la formule 6.9
duy _pv_ I (6.14)
dp a pa

Ainsi, il en ressort que la vitesse de 'onde variera avec la variation de pression selon le signe de T.
Or, le Chapitre 4 a fait ressortir que I' > 1 pour les fluides connus (en particulier, I' = (v + 1)/2 pour
les gaz parfaits, avec v > 1 typiquement).

Ainsi, pour des fluides normaux (I' > 0), la vitesse d’onde augmente (diminue) toujours quand la
pression augmente (diminue). Ainsi, un piston en accélération, créant une augmentation progressive de
la pression, générera des ondes de pression toujours plus rapides qui rattraperont celles qui les précédent
pour donner naissance & une onde de choc.

Il est & remarquer que si pour un fluide on avait I' < 0, leffet contraire se produirait. Une accélération
du piston créerait des ondes de plus en plus lentes avec augmentation de pression (du,,/dp < 0), et il
ne pourrait pas y avoir de coalescence d’ondes et donc d’onde de choc. Par contre, si le piston se retire,
créant une diminution progressive de la pression, les ondes de détente successives verraient leur vitesse
diminuer, et les ondes produites en premier rattraperaient les ondes produites en dernier, créant alors
un choc de détente ou de raréfaction. Ce phénoméne ne peut se produire que dans des cas ésotériques,
comme dans certains cas pour un fluide sous forme de plasma ou ptoche du point critique.

Dans le cas intermédiaire I"' = 0, des ondes de chocs ne peuvent jamais se former car toutes les ondes
ont la méme vitesse. Ceci ne peut se produire dans un gaz parfait, car cela donnerait un rapport de
chaleurs spécifiques v égal & —1!

Une petite remarque concerne le signe de I' qui, selon son expression (Equation 6.12), dépend de
la courbure (proportionnelle & d?v/dp?) d’une isentrope dans le diagramme P — v d’un fluide. Pour les
fluides normaux, la courbure de ces isentropes est toujours positive (isentrope concave), mais proche du
point critique, les isentropes révéle parfois un point d’inflexion avec un changement de courbure (Figure
6.14).
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FIGURE 6.14 — Comportement de la dérivée fondamentale, I', proche du point critique.

Stabilisation de ’onde de choc et génération d’entropie

La description précise des phénoménes a ’'intérieur d’une onde de choc sont trés complexes : ’objectif
ici est de comprendre les facteurs physiques déterminants au sein d’une telle onde. Alors que de part et
d’autre du choc ’écoulement est isentropique (sans frottement et adiabatique), il n’en est pas de méme
a lintérieur du choc : les variations brusques de vitesse engendre des effets visqueux et thermiques qui
ne peuvent pas étre négligés. Il y a ainsi génération d’entropie lors de la traversée d’une onde de choc,
qui sera évaluée dans le chapitre suivant.

Comme I’écoulement n’est pas isentropique, I’équation de conservation de quantité de mouvement
(qui fait intervenir les contraintes visqueuses) et I’équation de conservation d’énergie (qui fait intervenir
les échanges thermiques ainsi que les dissipations visqueuses) sont distinctes. Un équilibre s’établit entre
les forces inertielles qui tendent & raidir le profil et les forces visqueuses qui ont la tendance contraire
d’adoucir les variations brusques. Au chapitre suivant, une estimation de I'épaisseur de ’onde de choc
sera donnée en imposant cet équilibre.

6.2.2 Approche théorique

Afin d’appréhender la maniére dont se forment les ondes de choc et de détente, supposons que nous
soyons capables d’engendrer, dans un domaine monodimensionnel, une perturbation de vitesse u(z) au
temps initial ¢t = t; telle que celle représentée par la Figure 6.15. Etudions la propagation de cette
perturbation en supposant que 1’évolution thermodynamique du gaz soit isentrope.

Pour étudier la propagation, nous devons écrire les équations de conservation de la masse et de la
quantité de mouvement qui, compte tenu des hypothéses, deviennent

(6.15)

Comme ’écoulement est isentrope, les variables p et u peuvent étre considérées comme des fonctions de
p uniquement. Ainsi, les relations (6.15) s’écrivent sous la forme

dpou  dpou | ou_
du Ot uduam pax_7

ou Oou 1dpdpou

E—i_u% pdp du Oz o

(6.16)
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FIGURE 6.15 — Profil de vitesse d’une onde en un instant particulier.
soit d i
b V(2 (0
1“ +u1 dp dp g = : (6.17)
u —_ —
pdp du ox 0

ce qui constitue un systéme de deux équations homogénes. Le déterminant doit étre nul pour qu’elles
soient compatibles. Nous obtenons ainsi

Ldp (dp\> du 1 [(dp\?
s (i) om0 = 5= (7)) (019

dont nous déduisons la relation entre u et p

/(gi)%d;. (619)

En se servant du fait que la propagation de la perturbation est supposée isentrope, nous avons en vertu
de la définition de la vitesse du son (2.67)

dp) (dp> 2 P 1
—_ = _ =q = — = k,yp’)’ 5 620
(dp dp/ p (6.20)

ou la derniére égalité est obtenue en utilisant la relation isentrope (2.115). Nous pouvons maintenant
évaluer la valeur de u par la relation (6.19) en utilisant (6.20)

P _\idp 2 1 4=17P
y—1)2 3 D)
U= /p0 (k’yp ) —p = 7’)’ 1 (k) [p ] , (6.21)

soit finalement
2

__2 ~1y3 _ 771% —
S NI

Si nous introduisons maintenant expression (6.18) dans la seconde relation (6.16), nous avons en choi-

sissant le signe positif
ou dp ou
= = 2
8t+<u+<dp> ) 0, (6.23)

i
puis, en se servant & nouveau de (6.20), ’équation (6.23) devient

ou ou
%t (u+a) e 0. (6.24)

[a —aq] . (6.22)

N
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Il est possible de trouver une interprétation & cette relation en cherchant la condition pour que u, et
par suite p, restent constants au cours du temps, lors du déplacement de la perturbation. Ecrivons la
variation du = 0, sous la forme

Ou  dxOu
—+—7—=0 6.25
ot Tdror (6.25)
dont la comparaison avec (6.23) permet d’écrire
d
d—f = u+a. (6.26)

Cela signifie qu'une perturbation pour laquelle u a la valeur donnée par (6.19) se propage de telle fagon
que u et p restent constants en des points qui se déplacent a la vitesse u 4+ a. En se servant de (6.22),

(6.26) devient
dx v+1

S =uta=aot——u, (6.27)

qui permet d’étudier I’évolution de la pertubation (Fig. 6.15). Prenons un point P; sur la perturbation au
temps t = t1 et soit up la vitesse du fluide en ce point. Considérons aussi le point @)1 sur la perturbation
au temps t = t1 et soit ug la vitesse du fluide en ce point. D’aprés (6.27), les vitesses de déplacement de

Py et Q1 valent respectivement
dx + v+1
— =a up,
t)p 0 2 T

d 1
(),
t) Q.

Au temps t = to, P; est en Py et Q1 est en Q2. La distance entre deux points successifs est ainsi exprimée
par

(6.28)

1
PP = (ao + UP> (t2 — t1),
(6.29)
1
1Q2 = (ao + UQ> (t2 —t1),
soit, de maniére plus générale
+1
PP, 1= (a0+’y2 uP> (tn_tnfl)v
(6.30)

Qn@Qn-1= <a0 + 1t 1UQ> (tn — tn—l)-

Par conséquent, si la vitesse ug est supérieure & up, le segment Q);Q)2 est plus grand que le segment
P P,. La courbe (c) se déforme selon la Figure 6.16. La portion (c;) de (¢) comprise entre A et B, dont
la pente est positive, s’allonge tandis que la portion (cz2), dont la pente est négative se raidit.

Un observateur placé en z = ;1 quelconque, voit u augmenter lorsque (cg) le dépasse et u diminuer
lorsque (¢1) le dépasse. Or, si u croit, a croit également et par suite p et p croissent. En d’autres termes,
(c2) est une onde de compression et (¢1) une onde de détente. A des instants ultérieurs, la courbe (c)
prend la forme (¢’). Pour cette position, il existerait pour une méme valeur de x plusieurs valeurs de u, ce
qui est physiquement impossible. A partir du moment ou la branche (c¢q) est devenue verticale, I’évolution
n’est plus isentrope et le raisonnement précédent n’est plus valable puisque les équations utilisées ne le
sont que pour des écoulements isentropes. En fait, la déformation de ’onde ne se poursuit plus au dela
du moment ot la branche correspond & une discontinuité de la vitesse u, de la pression p et de la masse
volumique p se produisant dans une couche trés mince. La branche (c¢3) s’est transformée en une onde
de choc d’intensité finie. Ainsi, une onde de compression se transforme au bout d’un certain temps en
une onde de choc, tandis que 'onde de détente ne devient jamais une discontinuité.
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FIGURE 6.16 — Evolution de la perturbation

Remarque Est-il possible que 'onde se propage sans déformation ? Pour qu’il en soit ainsi, il faudrait
soit constant quelque-soit le point P sur la courbe (c¢). Ceci impliquerait que
(6.31)

1
u = const

d
que T
v+

ap + 9

Or, ceci n’est possible que si v = —1, ce qui n’est vérifié par aucun fluide réel.
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Chapitre 7

Ondes de choc droites

Alors que le chapitre précédent a cherché a justifier I'existence d’une tendance vers la formation
d’ondes de choc, le chapitre présent part de I’hypothése que le choc a été formé, en mettant de coté la
physique complexe du processus de formation et de stabilisation du choc. En particulier, la structure
interne du choc n’interviendra pas dans ce Chapitre. L’étude se base sur des observations expérimentales
selon lesquelles les chocs existent bel et bien, et qu’ils couvrent une région dans ’espace en forme de
lamelle de petite épaisseur (variant du micron au millimétre), traversée par de la matiére (un fluide), a
I'intérieur de laquelle se produisent des variations brusques des propriétés cinématiques, mécaniques, et
thermodynamiques. Comme il a été observé expérimentalement que cette région est trés fine, la théorie
qui suit idéalise le choc comme une surface de discontinuité dans I'espace. Cette idéalisation ne nuit en
rien & la théorie et permet d’obtenir des résultats largement vérifiés par ’expérience pour les propriétés
des régions de part et d’autre du choc.

7.1 Equations de conservation pour les ondes de choc

L’écoulement a travers un choc doit satisfaire les principes de conservation de la masse, de la quantité
de mouvement et de I’énergie. L’application de ces conditions sous forme intégrale conduira a un ensemble
d’équations qui sont les équations du choc ou conditions de choc.

7.1.1 Choix du référentiel

Par définition, une onde de choc droite est une onde normale a ’écoulement. En particulier, ’écou-
lement est normal de part de d’autre du choc. Comme observé dans le chapitre précédent, une onde de
choc peut étre stationnaire ou en mouvement par rapport a ’observateur. L’étude d’une onde de choc
peut étre faite dans un référentiel arbitraire, mais ’analyse s’en trouve grandement simplifiée quand le
référentiel est choisi comme étant fixe par rapport au choc. Le choc a alors une vitesse nulle, et est alors
traversé par un écoulement normal a ’onde, venant d’amont et se déversant vers ’aval.

lll us u2 W] w2
_uy
éﬁ ﬁ‘
u,  -u =
u,

FIGURE 7.1 — Référentiel choisi comme fixe par rapport a I’observateur.

Dans un référentiel fixe par rapport au choc, les vitesses d’écoulement seront dénotées par le symbole
w. Dans un référentiel particulier, la vitesse du choc est égale a us (que 'on prend normale au choc
pour linstant) et les vitesses des écoulements sont égales & u; et uy, choisies également normales au
choc (Figure 7.1). Pour l'instant ces vecteurs vitesses sont d’orientation et de module arbitraire. Dans un

référentiel fixe par rapport au choc, les vecteurs vitesse des écoulements peuvent alors s’exprimer comme
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suit

W1 = Uuj — Us, (7.1)
Wo = U2 — Ug. (72)

Ce schéma est tres général. Il s’applique aux différents cas particuliers présentés dans le chapitre
précédent.

* Pour une explosion ou l'observateur est fixe, le choc se déplace dans un milieu au repos (u; = 0).

* Pour une vanne se fermant brusquement dans une conduite hydraulique, la vitesse entre le choc et
la vanne est nulle (ugz = 0) tandis que la vitesse en amont u; est celle du fluide dans la conduite avant
la fermeture de la vanne.

* Pour un ressaut hydraulique remontant une riviére, le schéma est tel qu’il est présenté sur la Figure
7.1, avec uy étant la vitesse de la riviére par rapport a la berge et uy la vitesse du ressaut par rapport a
la berge également.

* Pour des skieurs en collisions, le schéma est identique a celui de la fermeture de vanne dans une
conduite.

7.1.2 Volume de controdle

On choisit un volume de contréle englobant le choc, comme illustré sur la Figure 7.2 ci-dessous.

w] 2
n .
n

S~ A Y

FIGURE 7.2 — Volume de controle

Le volume de contréle est choisi comme coincidant instantanément avec le choc. L’écoulement ne doit
pas étre nécessairement permanent pour ce qui suit. En particulier, le choc pourrait accélérer.

Comme les variations des propriétés de ’écoulement se font essentiellement & Uintérieur du choc, les
deux faces du volume de controéle paralléles au choc peuvent étre choisies arbitrairement proche du choc
afin que les intégrations sur ces faces (extérieures au choc) ne fassent intervenir que des quantités en
amont et en aval du choc.

Si ces deux faces paralléles au choc (S7 et Ss) sont infiniment proches (& une distance un peu plus
grande que 1’épaisseur du choc), le volume de controle devient trés petit. Ce choix nous permet de négliger
les termes faisant intervenir des intégrations sur le volume

De plus, les intégrations sur les faces perpendiculaires au choc (les bords du volume de controle,
Sp) sont également négligeables. Comme ces faces intersectent le choc, de forts gradients (inconnus, de
surcroit) existent le long de cette face, mais l’aire de cette face étant largement négligeable par rapport
a ’aire des faces paralléles au choc, les intégrations le long des bords peuvent étre négligées.

D’une maniére rigoureuse, si L est une dimension caractéristique de la face paralléle au choc, alors
une dimension caractéristique de la face sur les bords sera €L, ou € est infiniment petit. Ainsi, le rapport
des aires sera € quelle que soit la valeur de L. En particulier, il faudra parfois choisir L assez petit afin
qu’il n’y ait pas de variations locales (dues a la courbure du choc par exemple).
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7.1.3 Conservation de la masse

On utilise ’équation de conservation de la masse sous la forme (Equation 3.1)

9/ pdV+/pu-f1dS=0. (7.3)
ot Jv s

En se plagant dans un référentiel coincidant avec le choc, le vecteur vitesse devient u = w. Le premier
terme contenant la dérivée temporelle peut étre négligé selon les critéres énoncés précédemment. De
méme, toute intégration sur les “bords” est également négligeable. Ainsi, on se retrouve avec la relation

/S . pw -1 dS =0, (7.4)

laquelle devient

—/ pwnd5+/ pw,dS = 0, (7.5)
Sl SZ

ol w, est la composante de w perpendiculaire au choc, w, = w - . Il est & remarquer comment le
vecteur unitaire i change de sens en traversant le choc, ce qui conduit & un changement de signe pour le
produit scalaire w - i de part et d’autre du choc (w ne change pas de sens). Comme les faces sont prises
assez petites pour que les propriétés soient uniformes de part et d’autre du choc le long de ces faces, et
que les deux surfaces S; et Sy ont la méme aire (du fait qu’elles soient trés proches 'une de 'autre), on
a alors

PLWn,1 = P2Wn 2. (7.6)

Cette relation représente la conservation de masse & travers le choc. On peut la réécrire en exprimant la
différence ou saut d’'un paramétre quelconque a travers un choc. Ce saut est représenté avec une notation
conventionnelle faisant intervenir des crochets. Ainsi, le saut du débit massique, par unité surface de
choc, peut étre écrit [pw,]

[pwn] = p2wn2 — prin,1, (7.7)

qui, dans le cas présent, est nul
[pwn] = 0. (7.8)

7.1.4 Conservation de la quantité de mouvement

D’une maniére similaire, on utilise ’équation de conservation de quantité de mouvement sous forme
intégrale (Equation 3.4)

é/pudV—l—/pu(u-ﬁ)dS:—/pﬁalS—F/T-ﬁdS—k/,ode, (7.9)
ot Jy s s s v

ou T représente le tenseur des contraintes visqueuses et f le vecteur des forces volumiques. L’intégration
sur le volume de la quantité de mouvement(celle faisant intervenir une dérivée par rapport au temps)
peut étre négligée du fait d’un volume choisi comme infiniment petit (il ne peut pas y avoir de stockage
de quantité de mouvement). Par le méme argument, 'intégrale volumique des forces de volume (gravité)
est négligeable pour un volume infiniment petit. Comme les faces S; et So sont choisi hors du choc, les
contraintes visqueuses y sont négligeables (par hypothése 1’écoulement est isentropique de part et d’autre
du choc). Le choix d’un volume de controle trés fin permet d’éliminer les termes faisant intervenir des
intégrations sur les bords (S3), ce qui est commode car les contraintes visqueuses y sont conséquentes et
non connues. Ainsi

/ pw (w - 1) dS = —/ pidS. (7.10)
51,52 SI7S2

La composante le long de I’écoulement produit alors

—P1Wn 1 W1 + P2y 2Wy 2 = P1 — P2, (7.11)

ou
p1+ P1w72L,1 =p2+ ;021113,27 (7.12)
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qui peut s’écrire
[p+ pwl] = 0. (7.13)

Une remarque trés importante concerne la forme de cette relation : bien qu’elle ait une ressemblance
trompeuse avec la relation de Bernoulli pour les écoulements incompressibles (elle ne contient pas de
facteur 1/2 devant w?), elle est absolument distincte de cette derniére. Pour commencer, 1’écoulement
traversant le choc est compressible. D’autre part, alors que la relation de Bernoulli est obtenue pour un
écoulement isentropique le long d’une ligne de courant, la relation présente a été obtenue par conservation
de quantité de mouvement de part et d’autre du choc, et non le long d’une ligne de courant (qui,
elle, traverserait le choc ou les frottements et les transferts de chaleur feraient échouer la condition
d’isentropie). Finalement, le terme pw? représente un débit de quantité de mouvement au travers d’une
surface, alors que le terme de Bernoulli 1/2w? est une énergie cinétique le long d’une ligne de courant.

7.1.5 Conservation de 1’énergie

A partir de I’équation de conservation d’énergie (Equation 3.26)

2/peoalV—i-/V-(peou) dV:/V~(o"u) dV—l—/p(f~u)dV—/V~qu+/7"dV, (7.14)
ot Jy v v v v v

on réécrit les intégrales de volume sous forme d’intégrales de surface

9 peodV+/ (pepu)-ndS = f/pu~ﬁdS+/
s S

(T.u)-ﬁds+/ p(f-u) de/q~ﬁdS+/ rdyv,
ot |y s

s 1% %
(7.15)
ou 1
eo = e+ —u?. (7.16)

2

Comme précédemment, on néglige l'intégrale volumique de I’énergie (faisant intervenir la dérivée
temporelle) comme le volume V est pris comme étant infiniment petit. Il en est de méme des intégrales
sur les surface du bord S, (prises comme infiniment petites), qui, il faut le noter, font intervenir du travail
de frottement et de la transmission de chaleur (la o la surface Sj traverse le choc). Sur les surfaces Sy
et S, 'écoulement y est considéré comme isentropique, et ainsi les termes visqueux et de transmission
de chaleur sont nuls sur ces surfaces. Il reste les termes faisant intervenir les forces volumiques et le
rayonnement. L’intégrale volumique du travail des forces volumiques sur un volume infiniment petit peut
étre pris comme nul. En ce qui concerne le terme de rayonnement, I’expérience montre que les chocs ne
rayonnent que trés peu, et que, de plus, si ce rayonnement est sommé sur un volume infiniment petit, le
résultat est pratiquement nul. Ainsi

/ (pepu) -1 dS = — / pu-nds, (7.17)
51,52 51,52
qui peut se réécrire dans le repére du choc (pour des surface Sp et Sy égales)
w%,z w%,l
p2 | e+ N W2 —p1| €1+ 5 Wp,1 = —P2Wn2 + P1Wn 1. (7.18)

En introduisant l'enthalpie h = e+ p/p

w;, w5
p1 | ha+ 2’ Wp,1 = p2 | ha + 2’ W2, (7.19)

et en invoquant la conservation de masse, on obtient alors

2 (7.20)

h [h + } = 0. (7.21)
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7.1.6 Entropie
Le deuxiéme principe de la thermodynamique appliqué au volume de contréle impose la condition

[s] > 0. (7.22)

7.2 Propriétés des ondes de choc

Les relations fondamentales des ondes de choc sont donc les suivantes

[pwn] = 0, (7.23)
[p+pwi] =0, (7.24)
[h + “ﬂ =0. (7.25)

[s] > 0. (7.26)

Si nous combinons les équations de conservation de la masse et de la quantité de mouvement, il est
possible d’écrire la relation
Wnp,1Wn,2 = u, (727)
[p]
dans laquelle nous faisons apparaitre le flux de masse j = pywn,1 = p2wy,2 aprés multiplication par p;pa
de maniére a obtenir

-2 [p]
JEp—h (7.28)
[v]
ot v = 1/p est le volume massique.
On définit le nombre de Mach du choc (shock Mach number M, ;)
Wn,1

M, 1= . 7.29
1= (7.29)

La combinaison de la conservation de la masse et de la quantité de mouvement conduit alors au rapport
adimensionnel du saut de pression a travers le choc

II = Lp]Q = Mn,l [wn} = _MELJM’ (730)
piray a T n

ou la derniére égalité est obtenue a l'aide de (7.28) et de la définition du flux massique j. Nous en

déduisons la relation

2
[wn]” = = [p] [v]- (7.31)
Par définition, la valeur numérique de II est une mesure de 'intensité du choc. Parfois, la définition

o= % est aussi utilisée. Les deux cas extrémes en termes d’intensité de choc sont les chocs forts et les
chocs faibles.

Choc faible Dans le cas d’un choc faible, nous avons la condition II < 1 ce qui implique, en vertu de
(7.30), les conditions
[wy]

-
HUB RSS! (7.32)

U1

My —1

Choc fort Dans le cas d’un choc fort, nous avons la condition II > 1 ce qui implique, en vertu de
(7.30), les conditions
[wn]

T
] p>1 (7.33)

U1

My, —1
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7.2.1 Equation de Rankine-Hugoniot

Considérons 1’équation de conservation de Iénergie a travers un choc (7.25) et écrivons la sous la
forme

1
h2 - hl - 5 (wn,l - wn,Q) (wn,l + wn,2) 5 (734)

puis celle de quantité de mouvement (7.24) récrite comme la différence
Wnp,1 — Wnp,2 = 5 (735)

et enfin la conservation de la masse (7.23) exprimée comme la somme

1 1
Wp,2 + Wn1 = < + ) P1Wn,1- (7-36)
p1 - P2

Par substitution de (7.35) et (7.36) dans (7.34), il vient
1py — 1 1 — 1 1
hog — hy = TP < + ) P1Wn 1 = p2—P1 ( + ) , (7.37)
2 pywna \p1 P2 2 p1 o P2

qui ne contient plus que des grandeurs thermodynamiques. Si p;, p; sont connues et si la fonction
ha = ha(p2, p2) est donnée a partir d’une équation d’état, cette relation se réduit a ps = pa(p2). Clest
la relation du choc adiabatique ou adiabate dynamique d’un gaz, aussi nommé équation de Rankine-
Hugoniot.

7.2.2 Variation d’entropie a travers un choc faible

L’équation de Rankine-Hugoniot peut étre réécrite sous la forme suivante

1) = w1 o] + 5 o] ). (7.39)

Un développement de Taylor de h(s,p) et v(s,p) et 'utilisation des identités thermodynamiques suivantes

oh
T=|— .
(83 )p , (7.39)
oh
_ (9 4
v (8}7) R (7.40)
conduit & la relation importante suivante
1 0% 3 4
[s] = o7, (9292)5 [p]” + 0 ([p] ) : (7.41)

Sous forme non-dimensionnelle, cette derniére expression s’écrit sous la forme

T 1
;E] = I o (), (7.42)
1

ou la dérivée fondamentale a déja été introduite

a* (0%
r-2 (apz> . (7.43)

Ainsi, si [s] > 0 selon le second principe de la thermodynamique, alors le signe de II doit étre égal au
signe de la dérivée fondamentale pour des chocs faibles. Comme pour la plupart des fluides I" > 0, alors
seuls des chocs de compression (et non de détente) sont possibles. Ceci reste vrai pour des chocs forts
(démonstration dans Landau and Lifshitz, 1997).
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7.3 Relations entre variables thermodynamiques de part et d’autre
du choc pour un gaz parfait

Considérons onde de choc droite de la Figure 7.2. A 'amont du choc (région 1), I’écoulement est
uniforme et, & 'aval dans la région 2, ’écoulement est lui aussi uniforme mais les variables d’état sont
différentes aprés la surface de discontinuité. La pression, la vitesse, la masse volumique, ’enthalpie et la
température de la région 1 subissent la varation

b1 — D2,

Wn,1 — Wn, 2,

pP1 — P2, (744)
hl — hg,

T1 — TQ,

entre les régions 1 et 2. Dés lors, le probléme du choc droit peut s’énoncer de la maniére suivante. Etant
données les grandeurs pi, wy,1, p1, b1, T1 connues a 'amont, déterminer les grandeurs pa, wy 2, p2, A2,
T a l'aval du choc. Pour la résolution de ce probléme, nous utilisons les équations de conservation ainsi
que les équations constitutives.

Tout d’abord, introduisons les nombres de Mach M,, ; et M, 2 en amont et en aval du choc

Wn,1 Wn,2

et My 2 = =, (7.45)
ai a2

Mn,l =
puis rappelons qu’a ’aide de la vitesse du son dans un gaz parfait, nous pouvons écrire
w? = a’>M? = yrTM?. (7.46)

En utilisant I’équation de conservation de ’énergie pour une onde de choc (7.25), la relation thermody-
namique (2.98) ainsi que celle liant ¢, a y et r (2.101), nous avons

1 1
Ty + inlMil = Ty + ?erQMgz, (7.47)

v
v—1 v—1

dont nous déduisons que
-1 -1
T (1 + ”2M3’1> =T (1 + 72M312> : (7.48)

En comparant cette relation a 'équation (4.29) exprimant la température totale Ty en fonction de la
température statique 7' rappellée ici

1
Ty =T (1 + 72M2) : (7.49)

nous aboutissons au résultat déja connu
To,1 = To,2, (7.50)

traduisant le fait que la température totale ne change pas a travers le choc. Avec (7.48), nous obtenons
le rapport des températures de part et d’autre du choc

Ty (1+ VT_erle)

—= = = , (7.51)
L (1+ WTlMﬁz)
qui permet d’obtenir, avec la vitesse du son et la relation thermodynamique (2.98)
-1

A (1+5EM2,)

Ensuite, l'utilisation de I’équation de conservation de la quantité de mouvement (7.24) et celle de I’équa-
tion d’état permet d’écrire

p1rTy + pryrTiM7 | = porTy + poyrTo MY 5, (7.53)
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ou la définition du nombre de Mach (7.45) a aussi été introduite. La relation précédente s’écrit aussi
Ty (L +yM7 ) = paTo (1+7M; ) . (7.54)
Par conséquent, le rapport des masses volumiques s’écrit

pr (L+MEy) (L+ 55 M2 5)  wan (7.55)
pr (L+yM2,) L+ 52 M2 ) wag’ :

ot la derniére égalité est obtenue par conservation de la masse (7.23). Puis, en utilisant I’équation d’état,
nous déduisons de la relation précédente le rapport des pressions

p2_paTy  (L+7yM3,)

_ etz U Maa) 7.56
o (1+yM2,) (756)

Nous avons ainsi résolu le probléme du choc droit puisque tous les rapports entre variables d’état ont été
exprimées. Cependant, il reste une inconnue : le nombre de Mach M), » qui peut étre éliminé en utilisant
la conservation de la masse. Ainsi, en élevant ’équation de consrvation de masse (Equation 7.23) au carré
et en utilisant ’expression de la vitesse du son ainsi que la définition du nombre de Mach, nous avons

PTIAE, — (AT, (7.57)
puis en utilisant les résultats pour ﬁ—fet %

Mio (L35 M2o)  Mi, (14255 M )

2 2 - 5 2 (758)
(1 +7Mn,2) (1 +7Mn,1)
L’équation est quadratique en ME,Q et Mfl’l. Les deux solutions s’écrivent
1+ 254 M2
2= g aer o M =M, (7.59)
n,l T2

dont seule la premiére est intéressante. Ainsi, en utilisant (7.59) pour éliminer M,, » dans les relations
exprimant les rapports entre variables d’état, nous avons

P2 2 2 Y- 1> 2y 2
2o 2 (M2 =) =1+ = (M2, 1), 7.60
D1 v + 1 <FY n,l 2 7y + 1 ( 2,1 ) ( )
Ty he 2 \? 1 y—1_ ., , v-1
22 1 M |V — 7.61
I (7+ 1) Mz ( Ty ) T ) (7.61)
Py War _yFl_ Mis (7.62)
pL - Wnp2 2 1+ 5EME '

Nous remarquons que pz, Wy 2, P2, N2, 1o peuvent s’exprimer uniquement en fonction des grandeurs
physiques a 'amont. D’autres rapports obtenus a 'aide des relations (4.29), (4.31) et (4.32), associées
aux grandeurs totales, peuvent étre utiles

To2 _T21+WT_1M22

202 227 2 Tm2 g 7.63
Top Ti14+2712Mm2, (7:63)
1 P 1 o+l 2
@ _ @ . ZQ {1+’}/;M721,2}7 _ (%) " MT’LY,II (7 64)
=l 12 = - = IR '
poa  por  pr | 1+ =My, {1+ ’YTlM’g,l}’y T{yM2, - ALy

traduisant une perte de pression totale due au choc. Ainsi, la pression totale py ne reste pas constante
quand I’écoulement traverse un choc, contrairement & la température totale Ty. Les variations des para-
métres sont représentés sur la Figure 7.3.
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FIGURE 7.3 — Rapport des parameétres de part et d’autre du choc en fonction du nombre de Mach du
choc.

7.3.1 Accroissement d’entropie a travers un choc

Pour calculer la variation d’entropie au travers du choc, utilisons la relation (2.105) qui s’écrit sous
la forme

T
Sg—81=c¢pln [1_’2] —rln [%} . (7.65)
1 1
D’une part, nous pouvons écrire
T
So — 81 =802 — S0 = Cpln [#} —rln [@} = —rln {m] , (7.66)
0,1 Po,1 Po,1

ou la derniére égalité est obtenue avec (7.50). Nous en déduisons que

(s2—s1)
P02 _ exp= (7.67)
Po,1

Nous remarquons immeédiatement que si s — s7 > 0, la pression totale pg décroit & travers le choc.
D’autre part, les expressions (7.65), (7.61) et (7.62) permettent d’obtenir

Y
2y 2 2 M2,1 —1
S9 — 81 = Cy hl{ |:1 + m (Mn,l - 1):| [1 — m;\f—ﬁ’l s (768)

reflétant ainsi le fait que la différence sy — s; & travers le choc ne dépend que de M, ;. La variation
d’entropie a travers le choc est représentée sur la Figure 7.4.
Or, la seconde loi de la thermodynamique implique

S92 — 81 Z 0 (769)
Avec la relation (7.68), nous voyons que

M,1>21 — s3—5 20,

Mn71 <1l — s5—151<0, (77())
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Sy = 04 /

e, /

n,1

FIGURE 7.4 — Variation d’entropie a travers le choc pour un gaz parfait (v = 1.4).

ot seule la premiére relation vérifie le second principe. Par conséquent, seuls les cas M, ; > 1 sont
valides traduisant le fait que les chocs ne peuvent apparaitre que dans un écoulement supersonique. Nous
pouvons encore le montrer par le raisonnement suivant. Il suffit de poser Mfm =1+4e¢e,avece < 1de
sorte que (7.68) devienne

53— 81 = cvln{(l + % ([1+¢] - 1)} {1 - vil (I(Ti)g) lr} (7.71)

}

puis d’effectuer un développement en série de Taylor

B 2y 1/ 2y \° 1/ 2v \°
So slcv{ 'y—i—lg 2<7+16) +3 7—}—16 + ...

(7.72)
. 2 1 ( 2 )2 1 ( 2 )3 N
CU - - = - = — . 5
T D0+ 2\(r+D1+9)) 3\r+D)dte)
dont nous déduisons,
2 —1
Sg — 81 = cvaQ)s?’ + 0(eh). (7.73)
3(y+1)
Nous pouvons ainsi exprimer la différence d’entropie en fonction de 'intensité du choc II' = p"’p;lpl
1 '72 -1 14
5281 =Co g 2 " + o1I1'?) (7.74)

Ainsi, pour II' < 1, I’entropie est presque invariable et & la limite lorsque ¢ tend vers zéro, I'intensité du
choc tend aussi vers zéro. Nous obtenons alors une onde acoustique dont la vitesse de propagation est
donnée par la vitesse du son.

7.3.2 Relation de Rankine-Hugoniot

Dans le cas d’un gaz parfait, nous avons

h=cT=——=, 7.75
oy —1p (7.75)
ce qui permet d’écrire (7.37) sous la forme
1+ 20— 2y
p = p
b1 o s P2
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que nous comparons avec la relation isentrope

vy
P2 _ (92) —y (Pl) . (7.77)
b1 P1 P2
P1

La figure 7.5 représente une comparaison du rapport % en fonction de oy
et de Rankine-Hugoniot.

entre les relations isentrope
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FIGURE 7.5 — Représentation des relations isentrope et d’Hugoniot

Par hypothése, ’entropie est constante et égale & s; en tout point de AC. D’autre part, tous les
points en-dessous de AC' (ou au-dessus) ont une entropie supérieure (ou inférieure) a s;. En effet, 1’état
du fluide en B est obtenu a partir de I’état en A en diminuant p & p constant. Or, nous avons

»\?
s=c,In <p) + S0, (7.78)

dont nous déduisons que 'entropie en B est supérieure a s;. Par ailleurs, seule la branche OB correspond
a des évolutions physiquement réalisables, puisque I’entropie variant au cours de son passage a travers le
choc doit nécessairement croitre en vertu du second principe. Or, la branche OB correspond aux valeurs
positives de In 22 donc a des valeurs positives de In 22. Par conséquent, la pression croit a travers le choc.
Une onde de choc droite est donc une onde de compression.

7.3.3 Relations entre les vitesses de part et d’autre du choc

Considérons maintenant la conservation de la quantité de mouvement (Equation 7.24) écrite sous la
forme
Wnp — Wy = — - P2 (7.79)
P1Wn,1 P2Wn,2
puis la conservation de 1’énergie (4.38) exprimée par la relation suivante, obtenue en introduisant la

condition sonique

2 _
P _oytla -1 (7.80)
pw 2v w 2y

Cette condition sonique existe obligatoirement de par la forme de 1’équation de conservation d’énergie,
mais évidemment ne se produit pas physiquement a I’intérieur du choc.
Ainsi, par substitution de (7.80) dans (7.79), nous avons

y+1, 1 1 v—1
n n — * n, n K 7'81
W2 — Wp 1 5 a o s + > (Wn,2 — Wn.1) ( )

)

ce qui s’écrit aussi sous la forme

_ 2
e o ]—0, (7.82)

Whp.9 — W 1—
(wn2 nl)[ 2y 27 W, 1Wn2

dont la solution wy, 2 = w,,1 ne nous intéresse pas. Il reste ainsi

-1 1 2
{1 _a-l_atl e } —0, (7.83)
2y 2y Wp,1Wn2
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dont nous déduisons
Wy 1 Wh,2 = a’. (7.84)

Le produit des vitesses de part et d’autre du choc est égal au carré de la vitesse critique. Cette relation
est connue sous le nom de relation de Prandtl. Deux solutions semblent possibles. Cependant, 1’évolution
a travers le choc n’est pas isentrope et par conséquent so > s1, et donc pa > p1, soit pa > p1. Ainsi, avec
la conservation de la masse (Equation 7.23)

w
Zn2 _ A (7.85)
Wn 1 P2

nous aboutissons a la condition
Wn 1 > Wn, 2, (786)

qui exprime le fait que I’écoulement est toujours supersonique a ’amont d’un choc droit et subsonique a
laval.

7.3.4 Pression totale et col sonique de part et d’autre du choc

Une relation pratique que I'on peut obtenir a partir de la relation (5.47) est la suivante
poA, = const. (7.87)

En effet, considérons les deux écoulements isentropes de chaque coté d’un choc droit dans une tuyére.
Nous savons que la température totale ne change pas, soit Ty 1 = Ty 2 = T, ou l'indice (1) correspont &
Pécoulement supersonique avant le choc et l'indice (2) a I’écoulement subsonique aprés le choc. En vertu
de la conservation de la masse, il est possible d’écrire pour un débit r donné conservé a travers le choc
et d’apres (5.47)

(poaoAs); = (poaoAs)y (7.88)

poao = poy/yrlo = %\/ ~yr1o, (7.89)

mais comme

nous avons 'égalité

DL JArTodes = 222 /rTh A, (7.90)
TTO ’ TTQ ’
et finalement, aprés simplification des termes constants
P01 441 = po2A 2. (7.91)

Tout se passe pour ’écoulement subsonique, comme si 'on considére une autre tuyére de section au col
A, 2, et de pression génératrice po .



Chapitre 8

Ondes de choc obliques

Une onde de choc oblique est telle que la vitesse de ’écoulement en amont du choc n’est pas per-
pendiculaire au choc. L’étude de ces ondes est justifiée car I’expérience montre qu’elles se produisent
effectivement, soit a 'avant d’obstacles pointus placées dans un écoulement supersonique, soit lors d’une
variation brusque de la direction d’une paroi.

Choc oblique

FIGURE 8.1 — Exemples d’ondes de choc oblique : ondes de choc bidimensionnelle sur le bord d’attaque
d’un diédre ; onde de choc conique sur un corps axisymmeétrique ; onde de choc courbe présentant a la
fois des parties droites et des parties obliques.

8.1 Equations de conservation pour les ondes de choc obliques

8.1.1 Volume de controéle

Comme pour le cas des ondes de choc droites, un référentiel fixe par rapport a I'onde sera choisi
afin de faciliter le traitement. On choisit un volume de contrdle englobant le choc, comme illustré sur la
Figure 8.2 ci-dessous.

A Tamont du choc (région 1), I’écoulement est uniforme et, & l’aval dans la région 2, 'écoulement est
lui aussi uniforme mais les variables d’état sont différentes aprés la surface de discontinuité.

Les hypothéses concernant le volume de controle sont identiques a celle du choc droit (Chapitre 7).

La distinction par rapport au cas des ondes de choc droites apparait au niveau des vecteurs vitesse
en amont et en aval du choc. En amont, le vecteur vitesse n’est pas perpendiculaire au choc (de par la
définition d’une onde de choc oblique). En particulier, il est possible de décomposer le vecteur vitesse
en une composante normale au choc, wy 1, et une composante tangentielle au choc, wy ;. En aval, la
direction du vecteur vitesse n’est pas a priori connue. Comme en amont, elle peut étre décomposée en
une composante normale, wy, 2, et une composante tangentielle, wy 2, au choc.

La pression, la vitesse, la masse volumique, ’enthalpie et la température de la région 1 subissent la
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FIGURE 8.2 — Volume de contréle pour une onde de choc oblique.

variation
p1 - D2
Wp,1 —  Wn,2,
We,1 — Wt,2, (81)
P1 — P2,
h1 — hg,
T1 — TQ,

entre les régions 1 et 2. Dés lors, le probléme du choc oblique est exactement celui du choc droit et
peut s’énoncer de la maniére suivante. Etant données les grandeurs p;, wy, 1, w1, p1, k1, T1 connues
a lamont, déterminer les grandeurs pa, wy 2, We2, p2, he, 1o & 'aval du choc. Pour la résolution de ce
probléme, nous utilisons les équations de conservation ainsi que les équations constitutives.

8.1.2 Conservation de la masse

On utilise I’équation de conservation de la masse sous la forme (Equation 3.1)

Q/ pdV+/pu~ndS:0. (8.2)
ot Jv g

En se plagant dans un référentiel coincidant avec le choc, le vecteur vitesse devient u = w. Le premier
terme contenant la dérivée temporelle peut étre négligé selon les critéres énoncés précédemment. De
méme, toute intégration sur les “bords” est également négligeable. Ainsi, on se retrouve avec la relation

/ pw -ndS =0, (8.3)
51,52
laquelle devient
—/ pwy,dS +/ pw,dS =0, (8.4)
Sl S?

ou wy, est la composante de w perpendiculaire au choc, w, = w - n. Comme les faces sont prises assez
petites pour que les propriétés soient uniformes de part et d’autre du choc le long de ces faces, et que les
deux surfaces S; et Sy ont la méme aire (du fait qu’elles soient trés proches I'une de lautre), on a alors

P1Wn,1 = P2Wn 2. (8.5)

Cette relation est identique a celle trouvée pour une onde de choc droite.
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8.1.3 Conservation de la quantité de mouvement

D’une maniére similaire, on utilise I’équation de conservation de quantité de mouvement sous forme
intégrale (Equation 3.4)

g/pudV—|—/pu(u-n)dS:—/pndS+/T-ndS+/pde, (8.6)
ot Jv s s s v

ou T représente le tenseur des contraintes visqueuses et f le vecteur des forces volumiques. L’intégration
sur le volume de la quantité de mouvement (celle faisant intervenir une dérivée par rapport au temps)
peut étre négligée du fait d’un volume choisi comme infiniment petit (il ne peut pas y avoir de stockage
de quantité de mouvement). Par le méme argument, I'intégrale volumique des forces de volume (gravité)
est négligeable pour un volume infiniment petit. Comme les faces S; et Sy sont choisies hors du choc,
les contraintes visqueuses y sont négligeables (par hypothése, 1’écoulement est isentropique de part et
d’autre du choc). Le choix d’un volume de controle trés fin permet d’éliminer les termes faisant intervenir
des intégrations sur les bords (Sp), ce qui est commode car les contraintes visqueuses y sont conséquentes

et non connues. Ainsi
/ pw (W -n)dS = —/ pndS. (8.7)
S],SQ 517'52

Cette relation est vectorielle. La projection selon la normale n au choc produit alors
—P1Wn,1Wn,1 + P2Wy,2Wn 2 = P1 — P2, (8.8)

ou
p1+ prws = p2 + pawy o, (8.9)

qui, encore une fois, est identique & celle d’un choc droit.
La projection selon la tangente au choc conduit a

—p1wi,1 (W 1) + pawy,2(wy2) = 0, (8.10)
qui peut étre réécrite sous la forme
—wy 1 (prwn,1) + we2(pawn,2) = 0. (8.11)
La conservation de masse, p1wy,1 = pawy, 2, dicte alors que
Wy1 = We 2. (8.12)

La composante de la vitesse tangentielle au choc est donc invariante.

8.1.4 Conservation de 1’énergie

Soit ’équation de conservation d’énergie

g/ peOdV+/ (pepu)-ndS = —/pu-ndS+/ (T~u)-ndS+/ p(f-u) dV—/q-ndS+/ rdV,
ot Jv s s s v s

v
(8.13)
ou 1
ep=e+ §u2. (8.14)
Avec les mémes hypothéses que pour le cas du choc droit, on obtient
/ (pepu) -ndS = — / pu-nds, (8.15)
51,52 51,52

qui peut se réécrire dans le repére du choc (pour des surface Sp et Sy égales)

2 2 2 2
Wy, o + Wi o Wy, 1+ Wiy
P2 <62 + = 5 L ) Wp2 — P1 (61 + 5 L Wp,1 = —P2Wp,2 + P1Wp,1- (8.16)
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En introduisant l'enthalpie h = e+ p/p

2 2 2 2
W1 +wia Wn,o + Wiy
1z <h1 + n2t> Wn,1 = P2 (hz + % Wn,2, (8.17)
et en invoquant la conservation de masse, on obtient alors
2 2 2 2
w1 tw wy, 9 + W
hy + n,1 . t,1 — hy + n,2 5 t,2 (8.18)

Comme la composante de la vitesse tangentielle au choc est invariante, I’équation de conservation d’éner-
gie peut s’écrire sous les deux formes équivalentes

[h + “ﬂ =0, (8.19)
} =0. (8.20)

8.1.5 Entropie

Comme pour le cas du choc droit, le deuxiéme principe de la thermodynamique appliqué au volume
de controle impose la condition
[s] > 0. (8.21)

8.2 Géométrie
Les ondes de chocs droites et obliques différent de par la géométrie de ’écoulement. L’onde décrit un

angle # par rapport a I’écoulement en amont. L’écoulement en aval est dévié d’un angle § par rapport &
I’écoulement en amont. Ainsi

o . O,

@ > ‘ /
Lets ¢ o
X

FIGURE 8.3 — Définition des angles pour le cas d’une onde de choc oblique.

Alors que pour un choc droit le nombre de Mach de ’écoulement était identique au nombre de Mach
normal, il n’en est pas ainsi pour les ondes de choc obliques. En particulier, de simples considérations
géométriques conduisent aux résultats suivants

Choc droit Choc oblique
M, 1= M; M, 1 = M;sinf (8.22)
Mn,2 = M2 Mn,Z = M2 Sin(9 — 5)

8.2.1 Interprétation Galiléenne des ondes de chocs obliques

Soit une onde de choc normale, stationnaire par rapport & un observateur, comme indiqué sur le
schéma ci-dessous. Si ’observateur est mis en mouvement et se déplace maintenant le long du choc avec
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une vitesse —wy, I’écoulement dans le nouveau repére de ’observateur a alors la configuration du schéma
de droite. La géométrie de ’écoulement dans ce nouveau référentiel est celui d’'une onde de choc oblique
(une simple rotation du schéma redonne la Figure 8.3). Ceci est le cas car les composantes tangentielles de
la vitesse de part et d’autre du choc sont identiques (ce qui nous a permis de choisir un référentiel mobile).
Comme les propriétés thermodynamiques sont indépendantes du référentiel, ces simples considérations
conduisent au résultat que les ondes de chocs obliques doivent satisfaire les mémes relations que les ondes
de chocs droites.

nl Wn,2
_— — W, w,
w, w,
- W
Wn,Z !

Wn,l
FIGURE 8.4 — Observateur stationnaire par rapport a une onde de choc normale, et observateur en
mouvement le long de la méme onde de choc.

8.3 Relations entre variables thermodynamiques de part et d’autre
du choc oblique

8.3.1 Equivalence avec les ondes de choc droites

Les chocs droits et obliques répondent exactement aux mémes équations de conservation et consti-
tutives. De plus, comme seule la composante normale intervient, les relations liant les variables d’état a
I’amont et a ’aval du choc sont identiques pour les deux problémes du choc droit et du choc oblique. Il
est donc inutile de les réécrire. Il suffit d’utiliser les résultats du Chapitre 7, en s’assurant d’utiliser le
nombre de Mach normal, M, ; = M;sin6.

8.3.2 Condition d’existence

Alors que dans le cas des ondes de chocs droites, I’existence du choc demandait que ’écoulement
en amont soit supersonique, cette condition n’est plus suffisante pour les ondes de chocs obliques. La
condition d’existence du choc impose que le nombre de Mach normal, M,, 1, soit supérieur a 1. Ainsi,
I'existence d’'une onde de choc oblique demande que

M sing > 1. (8.23)

8.3.3 Relations thermodynamiques pour un gaz parfait

En reprenant les relations écrites pour une onde de choc normale en fonction de M, ;1 (Equations
7.60 & 7.62), et en insérant 'expression M,, 1 = Mj sin 6, nous obtenons les résultats suivants en fonction
du nombre de Mach absolu M; et de I'angle de ’onde de choc 6

2 -1 2
1’2:“< Mfsin29—72>:1+jl(MfsinQG—l), (8.24)
v v

P2 wpa1 Y +1 M3 sin? 6

8.25)
i , (
P1 - Wn2 2 1+ i 5 M? sin® 0
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T, pap1 2\’ 1 v—1 y—1
22 _ P20 1+ M251n29> < M2sin29>, 8.26
Ty p1p2 (7"’1) MfSin29< 2 ! e 2 (8:26)

puis, de la méme maniére avec (7.59) et (7.68)

2y 5 . o 2 M?sin?6—-1]"
—s =epnd |14+ (M2sin20—1)| |1— , 8.27
sg—8s1=cC n{[ +7+1( i sin )}[ R Ve (8.27)
Y-l 2.9
1 1+TMISIHG
M3 = —; — (8.28)
sin (9_6)7]\412811129—72

8.3.4 Géométrie

Si le nombre de Mach M; et I’angle de 'onde de choc 8 sont connus, la procédure suivante serait
utilisée pour résoudre le probléme. En effet, les nombres de Mach normal et tangent au choc peuvent
étre évalués a partir de

M, 1= M;sinb, (8.29)

M, 1 = M; cosé. (8.30)

La valeur de M, 1 et les relations des ondes de choc droites (Chapitre 7) peuvent alors étre utilisées
pour la détermination de M, 2 et des valeurs thermodynamiques en aval du choc (en supposant que les
valeurs en amont sont connues). Comme la composante tangentielle du vecteur vitesse est invariante de
part et d’autre du choc, il est possible d’écrire

Wyl = Wy 2, (8.31)

ce qui peut s’exprimer
Mt71\/ ")/TTl = Mt,2\/ ’)/T‘TQ, (832)

permettant d’obtenir

T
Mz =My = (8.33)
2
L’évaluation de My a partir de
M3 = M}, + M7, (8.34)
permet alors d’obtenir ’angle de déviation de ’écoulement ¢ selon la relation suivante
M, 2
sin( — 0) = —==. 8.35
sin(f = ) = 7 (5.35)

La relation (8.28) fait intervenir ’angle de déviation de 1’écoulement §, angle entre wy et wo, pour
le calcul du nombre de Mach Ms. D’aprés la géométrie du probléme,

tanf = 2mt et tan (0 — ) = w, (8.36)
Wt,1 Wt,2

)

et nous avons immeédiatement en vertu de (8.25) et de la propriété w1 = wy 2

tan (0 —0)  wn2 p1 2+ (y—1) M?sin?6

= 8.37
tan 0 Wn1 P2 (y+ 1) M} sin? 6 (8.37)

qui est une relation implicite de 4, 8 et M;. En réarrangeant les termes, il est possible de faire apparaitre
la relation explicite de § en fonction de My et 6

M?sin?6 — 1
M? (v + cos260) +2°

tand = 2cot 6 (8.38)

Si M et 6 sont connus, cette relation permet d’obtenir ¢ directement (solution unique). Dans une
autre catégorie de problémes (écoulements autour de profils aérodynamiques), 'angle ¢ est connu et il
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S Solution forte

Angle du
choc
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Angle de déflection J(deg)

FIGURE 8.5 — Variation de angle du choc en fonction de la déflection de I’écoulement, pour l'air (y = 1.4).

s’agit de trouver 0 a partir de la relation 8.38. La Figure 8.5 est une représentation de la variation de 6
en fonction de § .

Ce diagramme a été tracé pour différentes valeurs du paramétre M. Plusieurs remarques s’imposent.

* Pour un nombre de mach M; donné, il existe deux solutions de 6 pour chaque valeur de §, pour
autant que J soit inférieur & une valeur maximum §,,,x. Ces deux solutions sont dénotées solution faible
ou solution forte selon que la valeur de 8 est petite ou grande. D’une maniére générale, la solution faible
est la plus commune. Nous verrons plus loin dans quels cas on rencontre la solution forte. Parfois, on
dénote ces solutions comme correspondant & un choc faible ou un choc fort. La solution faible donne
effectivement lieu & une différence de pression plus faible de part et d’autre du choc par rapport a la
solution forte, et donc la solution faible fournit un choc plus faible que la solution forte. Cependant, bien
que les deux solutions correspondent a deux chocs d’intensité différente, il n’est pas vrai que 'on aura
un choc fort (ou faible) de maniére absolue pour la solution forte (ou faible). Par exemple, si ’on prend
la courbe pour M7 = 1.1, il existe bien deux solutions, une ou le choc est plus fort que I'autre, mais dans
les deux cas, le choc est de petite intensité de par la valeur du nombre de Mach proche de 1.

* Quand 0 tend vers zéro, il existe deux solutions pour 6, une proche de 90 degrés (choc droit) et une
deuxiéme correspondant & la solution faible. Nous allons montrer que cette solution correspond a une
onde de Mach. Une onde de Mach est caractérisée par le fait que ’écoulement est isentropique et n’est
pas dévié de sa trajectoire. De ce fait, une onde de Mach est telle que § — 0. A partir de I’expression
(8.38)

M? sin6 — 1
M2 (v + cos260) + 2

lorsque § tend vers zéro, tan § tend aussi vers zéro et, par conséquent, le numérateur de (8.39) doit suivre
le méme comportement. Nous en déduisons que

tand = 2cot 0

(8.39)

lim tand = 0 — M?sin?6 —1=0, (8.40)
5—0

ce qui fournit ’angle d’une onde de Mach

—0

1
lim # = p = arcsin <J\41) . (8.41)
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* 11 existe une valeur maximale de ¢ pour une valeur de M; donnée. Au dela de cette valeur maximale,
il ne semble plus y avoir de solution pour 6. Cette situation correspond & une rampe ou un diédre
d’ouverture trop grande. Il ne peut exister d’onde de choc oblique. Le choc se détache alors et on n’a
plus une onde de choc oblique attachée mais une onde de choc détachée, qui sera généralement droite
prés de 'axe de symétrie et courbe plus loin, et située légérement en amont de la rampe ou du diédre.
D’une maniére équivalente, le nombre de Mach doit avoir une valeur minimale pour qu’il puisse exister
une onde de choc oblique pour une valeur § donnée, sinon le choc sera détaché.

* Plus le nombre de Mach M; augmente, plus il est facile d’avoir une onde de choc oblique attachée
(dmax augmente). Pour une valeur constante de d, Pangle de 'onde de choc oblique (pour la solution
faible) diminue (pour le cas de la solution forte, cet angle augmenterait).

* Le nombre de Mach en aval du choc peut étre soit inférieur soit supérieur a 1. La solution forte
génére toujours un écoulement subsonique en aval du choc. Il n’en est pas ainsi pour la solution faible.
Le diagramme 8.5 montre la ligne de démarcation My = 1. Bien que cette ligne soit proche de la ligne
séparant la solution faible de la solution forte (§ = dmax), €lle ne coincide pas avec cette derniére. Il peut
exister des solutions faibles avec un écoulement subsonique en aval.

* 11 existe une valeur de § maximale au dela de laquelle une onde choc oblique n’est pas possible,
quelle que soit la valeur du nombre de Mach. Pour lair, cet angle est 1égérement supérieur a 45 degrés.

8.4 Phénoménes associés aux chocs

8.4.1 Choc attaché et choc détaché

Pour un nombre de Mach donné M7, nous avons vu qu’il existe un angle de déviation maximum 0 ay-
Si la géométrie est telle que § < dpax, on voit apparaitre un choc oblique rectiligne et attaché au coin
du diédre ou au nez de 'objet pointu. Cependant dans ce cas, il existe deux solutions de choc oblique
rectiligne (Fig. 8.6). En écoulement externe, la solution faible est généralement la plus commune. En
écoulement confiné ou avec des conditions ou des géomeétries en aval conduisant & des interférences, il est
possible, mais rare, d’obtenir la solution forte.

— > /

Solution faible

o T
/- / \ 5>5

Solution forte Choc détaché

FIGURE 8.6 — Chocs attaché et détaché

Inversement si § > dpnax, aucune solution n’existe pour une onde de choc oblique rectiligne. La nature
met cependant en place une onde de choc courbe et détaché du nez du corps pointu ou du diédre (Fig.
8.6). Elle est normale sur ’axe et s’incline de plus en plus au fur et & mesure que ’on s’éloigne de 'axe.
A longue distance, elle a la méme inclinaison que les ondes de Mach. Comme la courbure de 'onde de
choc change, on peut montrer a laide de la formulation de Crocco (Chapitre 3) que derriére le choc
Pécoulement est rotationnel (présence de vorticité).
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8.4.2 Ecoulement supersonique autour de diédres

L’écoulement supersonique bidimensionnel autour d’un diédre d’ouverture 2§ est caractérisé par une
onde de choc oblique rectiligne attachée au sommet du diédre & condition que § < dpax. L’écoulement
uniforme & 'amont et paralléle & 'axe de symétrie du diédre (par exemple) est aussi uniforme apreés le
choc et est parallele a la surface du diédre (Fig. 8.7). La pression a la surface du diédre est égale a la
pression statique po derriére le choc.

S M >1

%,

Q(’@
M >1 7
R )25 525

M <1

M >1

FIGURE 8.7 — Chocs sur un diédre

Lorsque § > dpyax, la distance entre le choc et le nez du diédre dépend du nombre de Mach aval et de
la valeur de §. Dans la zone proche de ’axe le choc se comporte comme un choc droit et, derriére le choc,
I’écoulement est subsonique. Il redevient supersonique en s’éloignant vers ’aval. On aura évidemment un
ligne sonique qui apparaitra lors de 'accélération du fluide.

8.4.3 Reéflexion et interaction des chocs

Reflexion d’une onde de choc oblique sur une paroi. Considérons un écoulement supersonique
M. Examinons ce qui se passe lorsqu’une onde de choc oblique I rencontre une paroi plane paralléle &
lécoulement (Fig. 8.8). Appelons P le point de rencontre de 'onde I et de la paroi. Aprés son passage
a travers I, I’écoulement est dévié vers la paroi d’'un angle §. La vitesse de la particule en P devant
étre nécessairement paralléle a la paroi, nous arrivons a une absurdité, & moins d’imaginer une onde de
choc oblique R issue de P qui redresse ’écoulement Ms en le déviant d’un angle —4. Dans ce cas la
vitesse des particules passant par P reste paralléle a la paroi et ’écoulement a& nombre de Mach M3 est
un écoulement uniforme de méme direction que celui en amont de I. L’onde de choc oblique R est une
reflexion sur la paroi de I'onde de choc incidente I.

Cette réflexion n’est pas toujours possible. Il faut non seulement que le nombre de Mach M5 soit
supérieur & 'unité, mais encore que My soit suffisamment grand pour que la déviation imposée soit
inférieure a la déviation maximum . réalisable avec une onde de choc oblique. Lorsque § est supérieur
A Omax correspondant & M;, 'expérience montre que la réflexion de 'onde incidente se produit en un
point de ’écoulement situé a une certaine distance de la paroi avec formation d’une troisiéme onde de
choc, du type fort et quasi-normale & la paroi (appelée choc de Mach). L’onde R est telle que la pression
en aval de R est égale & la pression en aval du choc de Mach. L’entropie derriére le choc de Mach et
en aval des deux chocs obliques est a fortiori différente. Par suite, il existe une ligne o on a un saut
d’entropie & pression constante et ot la direction de la vitesse est la méme : c’est une ligne ou surface de
contact.

Interaction de deux ondes de choc de méme intensité. Considérons deux ondes de choc oblique
I, et I5 créées en deux points quelconques d’un écoulement supersonique et analysons ce qui se passe
a leur point de rencontre (Fig. 8.10). On supposera que les deux ondes ont la méme intensité. Le plan
passant par le point d’intersection est paralléle & Pécoulement amont (symétrie). Pour I’écoulement, tout
se passe comme si le choc (par exemple I7) rencontrait une paroi qui serait ce plan. Il se produit alors
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FIGURE 8.8 — Réflexion d’ondes de chocs
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FIGURE 8.9 — Réflexion avec choc de Mach
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une onde réfléchie Ry (et Rs). L'interaction des deux chocs, se caractérise alors par un changement de
leur inclinaison en leur point de rencontre : on a donc une réfraction. Dans ce cas, My = M3 et My = Ms5.

FIGURE 8.10 — Interaction de deux ondes de choc de méme intensité

Interaction de deux ondes de choc d’intensité différentes. Considérons un écoulement super-
sonique M; entre deux plaques paralléles (Fig. 8.11). Chacune des plaques a un changement brusque
de direction, d’ou se propagent des ondes de chocs obliques I et I5. Au point d’intersection des deux
chocs, 'onde I; issue est réfractée et continue en Iy,. De méme I'onde I est réfractée et continue a se
propager selon Is/. L’interaction des deux ondes de choc oblique se caractérise donc par une variation de
leur inclinaison en leur point de rencontre.

FIGURE 8.11 — Interaction de deux ondes de choc d’intensité différentes

Les intensités des chocs I et I7 étant en général différentes, ’entropie derriére les deux chocs est aussi
différente. Par suite, il existe une ligne ot on a un saut d’entropie & pression constante et oit la direction
de la vitesse est la méme : c’est une ligne ou surface de contact. De méme que pour la réflexion simple
d’une onde de choc sur une paroi, il existe une valeur limite dmax = Omax(M7). Dans le cas ou la déviation
0 est supérieure a cette limite, I’expérience montre qu’il se produit une interaction plus complexe faisant
intervenir une onde de choc normale & la place du point simple d’intersection des deux ondes de choc
obliques.

Choc oblique en sortie de tuyére. Dans certaines conditions d’opération, la pression de sortie est
inférieure a la pression arriére, et une onde de choc oblique doit se former afin de comprimer I’écoulement
en sortie (Figure 8.12). La surface de contact entre ’écoulement de la tuyére et le fluide ambiant est alors
dirigée vers l'intérieur et son angle est celui de la déviation de I’écoulement de sortie suite a sa traversée
de 'onde de choc oblique. Il y a donc rétrécissement du jet.

Neutralisation d’une onde de choc. Il peut étre intéressant dans la pratique de neutraliser (Fig.
8.13) une onde de choc lors d'une réflexion. Considérons ’onde de choc oblique incidente (générée en
amont par un diédre ou une rampe). Cette onde détourne 1’écoulement d’un angle § vers 'onde, et
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FI1GURE 8.12 — Choc oblique en sortie de tuyére

augmente la pression statique du fluide. A Iintersection de l'onde et de la paroi, la condition physique
impose que ’écoulement soit paralléle & la paroi. Si la paroi est tournée du méme angle 9, alors cette
condition physique est vérifiée et il n’y a pas d’onde réfléchie. Par suite, il suffit de faire tourner la paroi
de 'angle 6 pour neutraliser I’onde de choc oblique.

FIGURE 8.13 — Neutralisation d’une onde de choc



Chapitre 9

Ecoulement de Prandtl-Meyer

Jusqu’a présent, nous avons été dans le contexte d’ondes de choc de compression. Cependant, dans un
écoulement bi-dimensionnel, une détente (baisse de pression) peut étre nécessaire. On a observé que dans
le cas monodimensionnel, une détente se faisait naturellement dans une tuyére de géométrie adapté au
nombre de Mach. Cette détente était d’ailleurs isentropique. Dans ce Chapitre, nous allons développer la
machinerie qui permet de détendre un écoulement en plus d’une dimension : c’est ce que nous dénomme-
rons les écoulements de Prandtl-Meyer, qui seront également isentropiques. Ainsi, tous les résultats sur
les écoulements isentropiques s’appliqueront dans le Chapitre présent. Une démonstration expérimentale
des ces écoulements de Prandtl-Meyer apparait sur la photo ci-dessous, ot, en plus des ondes de choc,
sont, présentes des régions que I’on démontrera comme étant des ondes de détentes isentropiques.

Faisceau continu d’ondes de détente
(ondes de Mach)

FIGURE 9.1 — Ondes de détente

9.1 Ondes de chocs obliques d’intensité infinitésimale

Dans le diagramme du Chapitre précédent, nous allons nous placer dans le cas ot 'onde de choc est
d’intensité infinitésimale, c’est & dire proche du cas d’une onde de Mach pour laquelle la déviation de
I’écoulement est infinitésimale & — 0 et son angle est § — p = sin~!(1/M;). Bien que pour les ondes de
chocs de compression nous avons été forcé de ne considérer que les cas § > 0 afin de respecter le second
principe de la Thermodynamique s, > s1, nous allons voir que pour des chocs d’intensité infinitésimale
des angles de déviation § < 0 sont autorisés.

A partir de la géométrie d’une onde de choc

Wn2

tanf = Yn1 et tan (6 — 0) = , et Wy = Wi = W2, (9.1)
We,1 W2

)

on obtient, avec un peu de manipulation de relations trigonométriques,

 [wn] _ tan o 7 9.2)
wy cos? (1 + tan 6 tan d)
qui devient, en utilisant la relation w;/a; = Mj cos6,
[wn] _ M, tan d 9.3)

ai cosf +sinftand’
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Avec M,, 1 = M;sinf et la relation 7.30 que nous rappelons

w

II= [p]2 =—Mp [ n]7 (9.4)
p1ay ai

on obtient ainsi une relation générale entre la différence de pression de part et d’autre d’un choc (pour

un fluide arbitraire, non nécessairement un gaz parfait), sa géométrie, et le nombre de Mach en amont

II tand
M2~ cotf+tand’ (9:5)

Pour des ondes de chocs obliques d’intensité infinitésimale, on a § — p et & — Ad, ce qui conduit &

Ad _ Ad
cot i o M12_1

lim — =
58 M}

: (9.6)

ol l'on a utilisé les relations pour des ondes de Mach (sinp = 1/Mi, cosp = /M7 —1/My, cotp =
/M? —1). Or, dans le Chapitre sur les ondes de chocs droites, le saut en entropie pour des ondes de
chocs faibles a été évalué pour des fluides quelconques

Ty s 1
;ZE I _ 6F1H3 +0 (1), (9.7)
1

ce qui méne a la relation suivante

. Tifs]  Tn o MY 3
N R e o

Nous allons montrer que cette relation permet de dévier ’écoulement d’une maniére isentropique sur
un angle arbitraire, positif (compression) ou négatif (détente). Si l'on considére un grand nombre n de
rampes, chacune déviant 1’écoulement d’un petit angle Ad = §/n, ’écoulement pourra ainsi étre dévié
au final d’un angle fini nAd = n(d/n) =4.

/K
AS Ao

FIGURE 9.2 — Compression & travers une succession d’ondes de chocs obliques d’intensité infinitésimale

Pour chacune des rampes infinitésimales, le saut en entropie & travers chaque onde infinitésimale est

§\3
[s]: = ki(A6)° = ks (n> , (9.9)
ou le coefficient k; dépend du nombre de Mach local selon la relation 9.8. Au bout des n rampes

[s] = s = Zk (i) = % (i Zk) = %k (9.10)

i=1

otl k est une moyenne (finie) du coefficient sur les n rampes. Comme 6 et k sont finis, il en résulte

lim [s] = 6°k lim i? =0. (9.11)

n— 00 n—oco N
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Ainsi, avec une succession d’ondes de chocs obliques infinitésimales, il est possible de dévier un écoulement
de maniére isentropique. De plus, comme & chaque rampe [p]; ~ Ad (Equation 9.6), le saut en pression
a la suite de plusieurs rampes sera proportionnelle & I'angle de déviation final

[p] = i[p]i = gKiAé = Zi;KZ (2) =n (i) <i il{,) =0-K. (9.12)

i=1

Il est donc possible de comprimer ou de détendre (car § peut étre négatif) I’écoulement de maniére
isentropique par une succession d’ondes de chocs obliques d’intensité infinitésimales (ondes de Mach).

Ny Pox = Poy| | S, =8
>1 M, <M,
p 1. py p>pTL>T, py > py
M, >1 @
1 py
M,> M, ©)
Py <Py
B
Py < py

FIGURE 9.3 — Détente et compression isentropiques

9.2 Compression et détente isentropes

9.2.1 Variation infinitésimale a travers une ligne de Mach

Soit Aw la variation infinitésimale de la vitesse & travers un choc infiniment faible et Aé la déviation
de I’écoulement.

FIGURE 9.4 — Changement cinématique & travers un choc faible

La déviation infinitésimale A positive correspond & une compression isentrope et la déviation infi-
nitésimale négative correspond a une détente isentrope. Nous avons

Bl _ cos 0, Y2 _ cos(f — AJ), (9.13)
w1 (%]
et puisque 6 — u
We,1 We,2
1 , - —AS 9.14
w =GOSk e = cos(u ) (9.14)
ce qui donne avec w1 = Wy 2
wo_ cos(pu — AJ) (9.15)

w+ Aw COS [
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Avec cos (u— Ad) = cospcos Ad + sin usin Ad, et en tenant compte du fait que AJ est petit, nous
pouvons écrire cos Ad ~ 1 et sin Ad ~ AJ, ce qui nous permet d’aboutir & ’expression

cos(p — AJ)

~ 1+ tan g - Ad. (9.16)
oS [

A partir des relations pour des ondes de Mach (tany = 1//M? — 1), on a alors

s(u — A6 Ad
coslu—29) gy 20 (9.17)
COS [ Mf—1
Ensuite, avec un développement en série de Taylor au premier ordre
1 A
+wA = ~1-, (9.18)
w C w
w
nous obtenons la relation finale
Aw Ad
- — =14 —, (9.19)
w M2 -1
puis de maniére équivalente
A Ad
20 _ _, (9.20)
w M? -1
ce qui donne
A
As=—v/M2—122 (9.21)
w
ou, en convertissant sous une forme différentielle
d
s = —/m2 —1°2. (9.22)

Cette relation donne la déviation & travers un choc oblique d’intensité infiniment faible. Elle gouverne
alors les écoulements autour de parois courbes avec des changements de pente positif ou négatif. Elle est
aussi valable pour les écoulements bidimensionnels supersoniques loin des parois.

9.2.2 Relations de Prandtl-Meyer

Dans le Chapitre sur les écoulements isentropiques, une relation entre dw/w et la variation du nombre
de Mach dM /M a été obtenue (Equation 4.23)

dw dM/M

w1+ (T - DM (8.23)

ou I est la dérivée fondamentale (égale & (v 4 1)/2 pour un gaz parfait). Ainsi

vVM?2 -1 dM
i B Y VER T (9:24)

Cette relation, valable pour un fluide quelconque, peut étre intégrée exactement si I' est constante. Nous
allons nous concentrer sur le cas du gaz parfait pour lequel les relations qui suivent ont été obtenues par

Prandtl et Meyer. Ainsi
vVM?2 -1 dM
1+ %MZ

On définit alors l'angle (M), connu sous le nom de fonction de Prandtl-Meyer, comme

M
VMZ =1 dM
V(M) = A (9.26)
1 1+ M2 M
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v(M)
[degrés] 40

1.5 2.0
M

3.0

ro
N

FIGURE 9.5 — Fonction de Prandtl-Meyer

L’intégrale peut étre effectuée analytiquement :

arctan ’y— — 1) — arctan VM2 -1, (9.27)

—1

dont une représentation est donnée a la ﬁgure 9.5 (en degrés).

La fonction de Prandtl-Meyer v(M) représente physiquement 1’angle de déviation que doit subir un
écoulement afin d’étre détendu d’un nombre de Mach initial M = 1 & un nombre de Mach M. Cette
fonction est utile pour résoudre les problémes de compression et détente isentropes. De par sa définition,
cette fonction est évidemment liée a ’angle de déviation de I’écoulement (et pas uniquement pour des
détentes).

Supposons par exemple que nous ayons un nombre de Mach incident M; et ’angle des lignes de
courant est 01 (par rapport a un axe arbitraire). Pour déterminer M lors d’une déviation dy — 07, nous
écrivons

d2 Mo M2 =1 dM Mo My
d= dé = — = — +/ .o) = —v(Ma) +v(My). 9.28
i L SrEnpar =) bt [ o= an svan. e2)

Finalement, on obtient la relation simple pour une déviation d’écoulement ¢
Z/(MQ) = V(Ml) - 5 (929)

Par simple inversion de la fonction de Prandtl-Meyer (qui est monotone), il est alors possible d’évaluer
Ms. De par la construction de la théorie, on prendra toujours :

* § > 0 pour une compression,

* § < 0 pour une détente.

9.3 Ondes de détente

Un exemple de faisceau continu autour d’un changement continu de courbure d’une paroi est illustré
sur la figure 9.6.

A Pamont de la déviation, I’écoulement est caractérisé par le nombre Mach M; et 'angle de Mach p;.
Une ligne de courant quelconque, qui & 'amont est paralléle & la paroi, dévie graduellement pour, a la
fin de I'expansion, étre paralléle & la paroi aval avec un nombre de Mach My et 'angle de Mach associé
2. Ceci signifie que la premiére onde de Mach limitant I’expansion (coté amont) est inclinée de ’angle
p1 par rapport & la paroi amont, tandis que la derniére est inclinée de ’angle us par rapport a la paroi
aval.

Entre les deux lignes de Mach limites, un faisceau de lignes de Mach forme l'expansion dite de
Prandtl-Meyer. Les propriétés en aval de la détente se calculent simplement en écrivant la relation de
Prandtl-Meyer pour une déviation négative, § < 0. Nous avons ainsi

Z/(MQ) = V(Ml) — 0. (930)
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FIGURE 9.6 — Détente isentrope avec courbure progressive et changement brusque.

Toutes les autres grandeurs se calculent avec les relations isentropes.
La méme analyse peut étre menée avec un changement brusque de direction d’angle A¢§ en présence
d’un diédre convexe (Fig. 9.6).

9.3.1 Ondes de compression

Une onde de compression isentrope peut étre engendrée par une paroi courbée. Dans certains cas, les
lignes de Mach peuvent converger au sein de ’écoulement et une onde de choc oblique peut apparaitre
(Figure 9.7). En connaissant le nombre de Mach Mj, il est possible de calculer Pangle de Mach u et la
fonction de Prandtl-Meyer v(My).

Hy

Hy

FIGURE 9.7 — Compression isentropique, avec formation de choc par coalescence d’ondes de Mach

Ensuite, comme langle total de la déviation § est connu (et positif), il est possible, a partir de la
relation de Prandtl-Meyer pour une compression, d’en déduire la valeur de v(Ms) et par suite de Ms et
enfin de l'angle uo. Toutes les autres grandeurs se calculent avec les relations isentropes.



Chapitre 10

Méthode des caractéristiques

On étudie dans ce chapitre les écoulements supersoniques, bidimensionnels, stationnaires, irrotation-
nels, et isentropes de fluides non visqueux.

10.1 Equations de conservation

10.1.1 Forme générale

Commengons par un rappel des équations de conservation générales du Chapitre 3 exprimées en
tenant compte des hypothéses que nous avons admises dans ce chapitre.

Conservation de la masse

Pour un écoulement stationnaire (permanent), ’équation de conservation de masse est donnée par

V- (pu) = 0. (10.1)

Conservation de la quantité de mouvement

Pour un fluide non visqueux, I’équation de conservation de la quantité de mouvement est donnée par

Du 1
= __Vp. 10.2
Dt p P ( )

En admettant un probléme stationnaire, ceci peut s’écrire sous la forme de Lamb

u? 1
\Y <2> —uAw= —;Vp, (10.3)

ot le vecteur tourbillon (vorticité) w est défini comme
w=VAu (10.4)

En utilisant la relation de Gibbs, I’équation de conservation de quantité de mouvement peut alors se
mettre sous la forme de Crocco (Chapitre 3)

Vhy=uAw+TVs. (10.5)

Conservation de ’énergie

Pour un écoulement permanent et adiabatique d’un fluide non visqueux, on a montré au Chapitre 3
que I’équation de conservation d’énergie prend la forme

u-Vhg =0, (10.6)

u-Vs=0. (10.7)

Ces deux relations expriment le fait que ’enthalpie totale et 'entropie reste invariants le long de lignes
de courants.
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10.2 Ecoulements irrotationnels

En absence d’ondes de chocs, les chapitres précédents ont été consacrés a des écoulements isentropes,
pour lesquels lentropie était invariante le long des lignes de courant. Méme en présence de chocs, ol
I’entropie subissait un ressaut, d’un cété et de I'autre du choc I’entropie restait constante le long des
lignes de courants.

De méme, I'enthalpie totale restait constante le long des lignes de courants, et en outre, gardait la
méme valeur en aval d’un choc sur chaque ligne de courant (mais non a l'intérieur du choc méme!).

Méme si I'analyse a été menée le long de lignes de courants, la plupart des cas étudiés avait la
particularité supplémentaire que certaines propriétés de 1’écoulement étaient uniformes dans tout le
champ.

En particulier, en amont de I’écoulement, ’enthalpie totale et 'entropie ont été, tacitement, choisies
comme étant uniforme. Cela était le cas dans les réservoirs ou pour les écoulements unidimensionnels.
De ce fait, toutes les lignes de courant avaient en amont la méme valeur d’entropie et d’enthalpie totale.
Au fil de ’écoulement, comme il n’y avait pas de gradient de ces quantités le long des lignes de courant,
leur gradient dans une direction normale & I’écoulement restait nul également. L’écoulement était donc
homentropique (entropie uniforme) et a enthalpie totale uniforme.

De ce fait, la vorticité était également nulle dans tout 1’écoulement, de par la relation de Crocco
(Equation 10.5). Les écoulements étudiés étaient donc irrotationnels, w = 0.

Cette conclusion reste vraie en aval d'un choc rectiligne. Bien qu’il y ait variation d’entropie au
travers du choc, la variation d’entropie est uniforme le long du choc. L’écoulement en aval du choc reste
ainsi homentropique et irrotationnel (Penthalpie totale restant invariante).

Une exception classique concerne les écoulements en aval des chocs courbes (localement obliques).
Meéme pour un écoulement uniforme en amont, I’écoulement sur différentes lignes de courants subit une
déviation différente le long de 'onde de choc courbe, et donc un saut en entropie différent. De ce fait,
méme si I’écoulement est & enthalpie totale constante et que ’entropie est uniforme en amont du choc,
Pécoulement en aval (méme si isentrope) n’est plus homentrope et devient rotationnel.

Pour ce qui suit, nous ferons I’hypothése que ’écoulement est homentrope et & enthalpie totale uni-
forme, et donc irrotationnel. En particulier, si des ondes de chocs son présentes, nous ne nous occuperons
que des régions en aval ou en amont, et les régions en aval de chocs courbes ne seront pas prises en
considération.

10.2.1 Nouvelle formulation des équations de conservation pour les écoule-
ments bidimensionnels, irrotationnels

La formulation suivante a été introduite par Liepmann and Roshko (1957), et est devenue classique.

On introduit un référentiel associé a la ligne de courant (référentiel dit naturel) et défini de la maniére
suivante. On désigne par ¢ I’abscisse curviligne le long de la ligne de courant et par ¥ la pente locale de
cette ligne (& ne pas confondre avec I’angle 6 de Ponde de choc). Les vecteurs £ et 7 sont respectivement
les vecteurs unitaires tangents et perpendiculaires a la courbe (en deux dimensions).

OZ{A
Rayon de courbure R, u—+ a n
de la ligne de courant &
0An
OAL An+—AL
Al+ P An

Ligne de courant

FIGURE 10.1 — Référentiel des lignes de courant (référentiel naturel)
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Le champ de vitesse u étant traditionnellement représenté par ses composantes (u,,u,) peut main-
tenant étre représenté par son module u = [Ju|| = |/u2 + u2 ainsi que son angle ¥, c’est a dire (u,?).

Les projections du vecteur vitesse u dans le systéme de coordonnées (x,y) sont
Uy = ||uf| cos ¥, u, = ||u||sind. (10.8)

Oun a ainsi (u, ) fonction de (£,n). Il est possible de montrer que le rayon de courbure R de la ligne de
courant

1 1 0An 09
1 19A0 9 (10.10)

R~ Al on o
Conservation de la masse

Par de simples arguments, la conservation de masse dans ce systéme de coordonnées s’exprime comme
suit
pulAn = const. (10.11)

Par différentiation logarithmique

10p 10u 1 0An

et en utilisant Equation 10.9, on obtient

10p  10u 90 _

Ea£+ﬂae+%_0' (10.13)

Conservation de la quantité de mouvement selon ?

On projette I’équation selon fen remarquant que le vecteur u A (V A u) est perpendiculaire au plan
formé par les vecteurs u et V A u et donc paralléle & la direction 1. Soit

ou 109p
— 4+ -—==0 10.14
Yot T oa0 =Y (10.14)
et avec la relation isentropique dp = a%dp
ou a?0p
— 4+ ——=0 10.15
Yot T, o (10.15)
L’utilisation de la conservation de masse conduit alors a
Oou o [10u OV
— = —— 4+ —| = 10.1
Yo ¢ {uc’%—’—an] 0 (10.16)
ce qui donne, en introduisant M = u/a,
10u 09
M? —1)—— — = =0. 10.1
( )u ol 0On 0 (10.17)

Irrotationalité

1l s’agit ici de trouver une expression de la vorticité en coordonnées (I,n) et d’imposer cette vorticité
a étre nulle. On utilise le théoréme de Stokes liant la circulation autour d’un contour fermé a la vorticité
traversant la surface délimitée par le contour

/st = %u - dx, (10.18)
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ou le terme € représente la composante du vecteur tourbillon perpendiculaire au plan (en 2D, cette
composante est la seule qui subsiste). Comme on choisit de travailler avec des écoulements irrotationnels,
on posera ) = 0. En faisant utilisation du schéma de la Figurel0.1

/QdS ~ QALAnR, (10.19)
fu cdx ~ulAl— [ u+ @An Al + %An , (10.20)
on on

en négligeant les termes de deuxiéme ordre. On remarquera que 'intégration selon n ne contribuent pas
car la vitesse est perpendiculaire & n. En utilisant Equation 10.10, on obtient

ou o

Un écoulement plan irrotationnel nous fournit donc la relation

ou o
— 5 tuzg; =0. (10.22)

Conservation de la quantité de mouvement selon n et conservation d’énergie

Nous allons voir que la relation de conservation de quantité de mouvement selon n et la relation de
conservation d’énergie sont essentiellement identique comme 1’écoulement est homentropique, irrotation-
nel, et & enthalpie totale uniforme.

En coordonnées (I,n), la conservation de quantité de mouvement selon n donne

uw? 10p
— +—-——=0 10.23
7T Son Y ( )
soit o9 5
1 dp
27 —_—_— =
u 5 + o 0. (10.24)

La relation de Gibbs T'ds = dh — vdp peut étre écrite en fonction de ’enthalpie totale T'ds = dhg — udu —
vdp, donnant ainsi selon £ et selon n

ds  Ohg ou 109p

T3 = 5 —(ua€+p(%>7 (10.25)
0s  Ohg Oou 10p

To =2 <uan + an> . (10.26)

Pour un écoulement a entropie et & enthalpie totale constante le long d’une ligne de courant, on a alors
0s/0l = 0 et Ohg/Il = 0, et la premiére relation (Equation 10.25) nous redonne 1’équation de conservation
de quantité de mouvement selon s, Equation 10.14.

Dans la deuxiéme relation (Equation 10.26), on utilise la conservation de quantité de mouvement
selon n, Equation 10.24, pour obtenir

0s  Ohy [ du 00
soit o oh
5_ 9
Tor =5 +ul (10.28)

Cette relation est ’équation de Crocco en coordonnées naturelles. Elle relie la vorticité € a la variation
d’entropie et la variation d’enthalpie totale perpendiculairement aux lignes de courant. Si deux de ces
paramétres sont nuls, le troisiéme ’est aussi. Ainsi, un écoulement homentropique et a enthapie totale
uniforme est obligatoirement irrotationnel.
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10.2.2 Caractéristiques de ’écoulement

Pour un écoulement homentropique et a enthapie totale uniforme (donc irrotationnel), deux équations
suffisent pour décrire I’écoulement. On choisit la conservation de quantité de mouvement selon ¢ ainsi
que ’équation d’irrotationalité

ou 09
3 + uss = 0, (10.29)
10u 09
M?*—1)-— — — =0. 10.
( )u ol 0On 0 (10.30)
En introduisant 'angle de Mach u tel que
tan pu = L (10.31)
B= 1 .
on a alors
VM2 —-10u 09
—t B T 10.32
an /i 7 + Y, 0, (10.32)
VM2 —10u 09

Il est possible & présent de rappeler la fonction de Prandtl-Meyer écrite en fonction de la vitesse de
Pécoulement, Equation 9.22, écrite en fonction de la vitesse u au lieu de la vitesse w (I’écoulement étant
isentropique, il n’y a pas d’ondes de chocs, et la notation w pour la vitesse n’est pas obligatoire)

=/ -1 (10.34)
Ainsi,
ov 09
—tan Por T o7 = 0, (10.35)
v 09
2 tan Py = 0. (10.36)
En les additionnant et en les soustrayant, on obtient les équations caractéristiques suivantes
0 0
<8€ + tan M8n> (v—9) =0, (10.37)
0 0
((% — tan M8n> (v+9)=0. (10.38)

Ces équations peuvent étre interprétées comme suit. Soit les deux ondes de Mach émanant d’un point
de la ligne de courant (Figure 10.2), que I'on dénote m™ pour celle & gauche dans le sens de 1’écoulement
(ou a babord) et m™ pour celle a droite (a tribord). Soit dm™ I'incrément en longueur le long de la ligne
de Mach m™. La dérivée d’une fonction F(I,n) le long de cette ligne de Mach peut s’écrire

dF 9F 9  OF dn

— = . 10.39
dm~ ol m—  Onm~ ( )
La géométrie de la Figure 10.3 donne dl/dm~ = cosp et dn/dm~ = sin . Ainsi
dF oF oF
— = — +t — . 10.4
dm- COS“((% - an“an> (10.40)
De méme on trouve iF oF oF
drni"" = COS (aé — tan /Lan) . (1041)
Ainsi, les équations caractéristiques peuvent s’écrire
d
—(v—1) =0, (10.42)

dm
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FIGURE 10.2 — Caractéristiques (ondes de Mach) m™ and m~

d

Les ondes de Mach m™ et m™ sont les caractéristiques de I’écoulement. On arrive & la conclusion

v — 1 = const = G le long de la caractéristique m™, (10.44)

v+ = const = D le long de la caractéristique m™. (10.45)

que l'on appelle les relations de compatibilité entre ¢ et v. Les constantes G (pour gauche) et D (pour
droite) sont dénommeées les invariants de Riemann.

Nous allons voir comment ce résultat peut étre utilisé pour évaluer un champ de vitesse bi-dimensionnel,
homentropique, et irrotationnel.

Une remarque concerne la similitude avec le résultat obtenu dans le Chapitre précédent pour les
écoulements de Prandtl-Meyer. Nous avions obtenu le résultat que la déviation infinitésimale dé a travers
une onde infinitésimale (onde de Mach) était liée a la fonction Prandtl-Meyer selon d(v + ) = 0. Ici,
nous avons obtenu un résultat liant I'angle de 1’écoulement et la fonction de Prandtl-Meyer le long des
caractéristiques (ondes de Mach), a savoir d(v + 9) = 0 selon m™* et d(v —9) = 0 selon m~. Nous
comprendrons le lien entre les deux résultats un peu plus loin.

Nous avons ainsi introduit un nouveau systéme de coordonnées m™ et m~ . Dans le plan (x,y),
nous obtenons par cette transformation deux familles de courbes m™(x,y) = const et m™ (z,y) = const
correspondant au réseau d’ondes de Mach de ’écoulement, qui prennent ainsi le réle d’un nouveau réseau
de coordonnées.

10.3 Meéthode de calcul des caractéristiques

Pour le calcul d’un écoulement bidimensionnel supersonique, la méthode est donnée sur la Figure
10.3.

Données

FIGURE 10.3 — Méthode des caractéristiques
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Les données (ou conditions de bord), tels que 9 et v, sont supposées connues dans le plan (z,y) le
long d’une courbe entre deux points 1 et 2 (qui est choisie comme n’étant pas une onde de Mach ou
caractéristique). La connaissance de v et ¢ équivaut & la connaissance du nombre de Mach M, de la
vitesse u, de Pangle de Mach pu, ou tout autre variable (thermodynamique par exemple). Si I'on trace la
caractéristique m™* émanant du point 1, alors 1’on sait que le long de cette caractéristique l'invariant de
Riemmann est D = D; est donnée par

D = D1 = Vg — 192. (1046)

De méme 'on trace la caractéristique m~ émanant du point 2, et le long de cette caractéristique
I'invariant de Riemmann est G = (G5 est donnée par

Dy =Dy, (10.47)
Gz = Go, (10.48)
donnant ainsi
vz + 93 = vy + 9. (1049)
vy — 193 = Vy — 192, (1050)

La solution se trouvent aisément & partir de ces deux relations

1 1
vy = §(V1 + VQ) + 5(191 - 192)7 (1051)
1 1
93 =501 —v2) + 5 (01 + D). (10.52)
ou, d’'une maniére générale
1
v=—-(D+G), (10.53)
1
v =5(D-G) (10.54)

Ainsi, la solution au point 3 semble se trouver d’une maniére simple et élégante. Il reste cependant des
inconnues dans ce probléme : les caractéristiques elles mémes.

La méthodologie de résolution se fait numériquement par étapes intermédiaires, en subdivisant la
région 123 en un maillage de segments droits correspondant aux ondes de Mach locales (Figure 10.4. Par
exemple, le point 5 est rejoint par des ondes de Mach droites émanant des points 1 et 4. Les conditions
en 5 sont déterminées & partir des données en 1 et 4. Le point 7 est déterminé d’une maniére similaire,
et le point 8 se trouve a partir des points 5 et 7. Ainsi, le calcul procéde en partant en aval de la ligne de
données entre les points 1 et 2, donc vers la zone d’influence. Ceci est une particularité des écoulements
compressibles (supersoniques), contrairement aux écoulements incompressibles pour lesquels les données
doivent étre spécifiées sur le pourtour de la région.

Données

FIGURE 10.4 — Réseau de caractéristiques droites pour I’évaluation



114 Méthode de calcul des caractéristiques

(v.4) (v %) (v %)
1 1 sun’ 1 s’
3 ___\.___-
g 3
m
2 (%) (»)
(v.3)

FIGURE 10.5 — Données pour l'évaluation en un point 3, de gauche & droite : point intérieur, paroi,
surface libre

Ecoulements intérieurs Pour un point intérieur & ’écoulement, nous avons vu comment les carac-
téristiques D et G permettaient de trouver des propriétés pour d’autres points en aval. La situation est
présentée sur la Figure 10.5.

Pour des données en deux points 1 et 2, les données en 3 sont trouvées a partir des caractéristiques
D1 et G5 selon

1

v3 = §(D1 + Ga), (10.55)
1

d5 = 5(Dy - Ga). (10.56)

Ecoulements avec paroi Si le point 3 se trouve sur une paroi, la direction de 1’écoulement en ce
point est donnée (¥3). Ainsi, on a bien deux paramétres connus, D et 93, ce qui permet d’évaluer v
selon

Vs =11 + 191 - ’193 = D1 - 193. (1057)

Ecoulements avec surface libre Si le point 3 se trouve sur une surface libre (surface de cisaillement
ou de contact), la pression est a priori connue en ce point, et donc la fonction de Prandtl-Meyer v3. Ainsi,
I'on a encore bien deux paramétres connus, D1 et vz, ce qui permet d’évaluer 3 selon

Y3=v1+1 —v3 =D —v3. (1058)

Ecoulement supersonique dans une conduite bidimensionnelle La procédure que I’on vient de
décrire permet ainsi d’évaluer I’écoulement dans une conduite supersonique bi-dimensionnelle (et, en
particulier, on n’a plus besoin de faire 'hypothése que ’écoulement est quasi-unidimensionnel comme
dans les Chapitres précédents).

La Figure 10.6 présente la méthodologie. Les données sont distribuées sur une ligne bc ainsi que sur
les parois ahq et dlt. En se basant sur les différents cas du paragraphe précédent, il est possible d’évaluer
les données sur tous les noeuds du maillage intérieur.

FIGURE 10.6 — Evaluation de I’écoulement dans une tuyére bidimensionnelle supersonique
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Régions non simples Comme les caractéristiques, rappelons-le, sont identiques aux ondes de Mach, la
solution de ’écoulement dans une tuyére supersonique dans le paragraphe précédent représente également
la solution au probléme de réflexions de faisceau de Prandtl-Meyer sur une paroi ou l'interaction de
faisceaux de Prandtl-Meyer & 'intérieur d’un écoulement. Le réseau de caractéristiques sous cette forme
générale forme une région qu’on appelle non-simple (Figure 10.7). Elle se résout par la méthode du
paragraphe précédent.

m

D4
m

FIGURE 10.7 — Région non simple

Régions uniformes Dans un écoulement uniforme, 1’écoulement est unidirectionnel (donc avec des
valeurs de ¥ constantes) et & nombre de Mach constant (donc avec des valeurs de v constantes). De ce
fait, les caractéristiques (et ondes de Mach) m™ et m™ sont rectilignes (Figure 10.8). Dans ce cas, elles
sont généralement omises des schémas.

¢4 B G, G

0

D

0

D, D D,

FIGURE 10.8 — Région uniforme

Régions simples Dans une compression ou détente de Prandtl-Meyer, le faisceau d’ondes est recti-
ligne : c’est celui qui a été tracé dans le Chapitre précédent pour les écoulements de Prandtl-Meyer (il
peut s’agir de caractéristiques m™* ou m™). Or, nous savons maintenant qu’il existe un deuxiéme ré-
seau de caractéristiques correspondant au faisceau de Prandtl-Meyer (Figure 10.9). Ce deuxiéme réseau
n’est pas composé de caractéristiques rectilignes. On parle alors de région simple de caractéristiques.
On remarquera que, comme le nombre de Mach (et donc v) et la direction de 1’écoulement (donc )
sont inviduellement constants le long d’une ligne du faisceau de Prandtl-Meyer (comme on I’a vu dans
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le Chapitre précédent), on en conclut que l'invariant de Riemann sur le deuxiéme réseau a la méme
valeur sur chaque caractéristique. En effet, si on considére que le faisceau de Prandtl-Meyer correspond
a des caractéristiques droites m~ (par exemple), alors toutes les caractéristiques m7T intersectant une
caractéristique (ou onde de Mach) particuliére m, (sur laquelle v = const = vy et 9 = const = V)
auront toutes pour valeur D = 1 + 9. Ainsi, tout le réseau m™ a la méme valeur pour I'invariant de
Riemann D = Dy. En particulier, pour n’importe caractéristique m™ intersectant une caractéristique
m; particuliére, on aura

v1 4+ 91 = vy + Yo, (1059)

c’est a dire
VT — Vg = 7(’(91 - 190) (1060)

Cette relation n’est rien d’autre que la relation de Prandtl-Meyer pour une ligne de courant traversant
un faisceau de Prandtl-Meyer avec la déviation § = 1; — .

m

m

FicURrE 10.9 — Région simple
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Annexe A

Vector and Tensor Identities

A.1 Operations with vectors

a-b=aqab;

[a N b]1 = eijkajbk.

V.a= a—xiai
0
[VAal; = €ijk %jak
0
[Val; = 6a:ia

aAb=-bAa
a-(bAc)=Db-(cAa)
aNn(bAc)=(a-c)b—(a-b)c
(aAb)-(cnd)=(a-c)(b-d)—(a-d)(b-c)

V:(eda)=Va-a+aV-a
V- (VAa)=0
VA (Va)=0
V A(aa) = (Va)Aha+aV Aa
VA(VAa)=V(V-a)—V. -Va

V(a-b)=a-(Vb)+b-(Va)+aAn(VADb)+bA(VAa)
V(a-b)=a(V-b)+b(V-a)+(a@aAV)Ab+(bAV)Aa
V(a-b)=(Va)-b+(Vb)-a

V.(aAb)=(VAa)-b—a-(VAD)
VA(aAb)=a(V-b)—b(V-a)+b-(Va)—a-(Vb)

VA(anb)=aA(VAb)—(aAV)Ab—-—DbA(VAa)+(bAV)Aa

an(VADb)—(aAV)Ab=a(V-b)—a- (Vb)
V(a-a)=2aA(V Aa)+2a-(Va)
V(a-a)=2(Va)-a
(Va)-a=a-(Va)+aA(VAa)
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A.2 Operations with tensors

[A-a]; = Ajjaq; (A.25)
[a-A]; = a;A;ji (A.26)
0

_ o)
[V A A]L] = EilmaixlAmj (A31)
[duaIA]Z = %EijkAjk (A32)
TrA = A“‘ (A33)
DetA = éeijkqurAiijqur (A34)
(A-B)T =B - AT (A.35)
A-a=a-A” (A.36)
A-B-a=A-(B-aj=(A-B)-a (A.37)
(A-a)-B#£A-(a-B) (A.38)
V- (aA)=Va-A+aV-A (A.39)
VA (aA)=(Va)AA+aV AA (A.40)
V- (A-a)=(V-A)-a+A:(Va) (A.41)
V-(a-A)=Tr(Va-A)+a-V-AT (A.42)
VAA-a)=(VAA)-a—2dual[A-(Va)l) (A.43)
V- (VAA) =0 (A.44)
V- (VAAT =v AV .- (AT) (A.45)
VA(VAA)=V(V-A)—-V-VA (A.46)
A:B=B:A (A.47)
A:B"=A":B (A.48)
A:B'=Tr(A-B) (A.49)
Tr(A-B)=Tr(B-A) (A.50)
dual AT = —dual A (A.51)
V Adual A = %V-(ATfA) (A.52)
dual V A A = %(v AT VTrA) (A.53)
V -dualA = %TrV/\A (A.54)
dual A - dual B = iA . (B—B") (A.55)

1
dual A - dual B = 1(A—AT) :B (A.56)
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A3

A4

Operations with anti-symmetric tensors W

TTW=0

W.a=—(dual W) Aa
a-W = —aA (dual W)
V- -W = -V A (dual W)
V -W = V¥ A (dual W)

duaIV/\W:—%V-W

W: Va=(dualW)-V Aa

a-VAb=W,:Vb

aNA=-W,- A
Arna=-A - W,

a-(bAA) = (aAb)-A
(AAa)-b=A-(aAb)
(anA)-b=aA(A-Db)
a-(AAb)=(a-A)ADb
arn(AAD)=(aAA)AD

VA(AAa)=A(V-a)+(a-V)A—(V-AT)a— (A-V)a

Operations with symmetric tensors S

Sij:Sji
dualS =0
TrVAS=0

(A.79)
(A.80)
(A.81)
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A.5 Operations with dyadics

[ab]ij = aibj (A82)

(ab) - (cd) = a(b-c)d (A.83)

(ab)Ac=a(bAc) (A.84)

aA (bc)=(aAb)c (A.85)

(ab) A (ed) = a(b A c)d (A.86)

cA(aAb)=c-(ba—ab) (A.87)

cA(aAb)=(ab—ba)-c (A.88)

dual (ab) — %a Ab (A.89)

dual (ab+ba) =0 (A.90)

dual(ab—ba)=aAb (A.91)

W, Wy, =ba— (a-b)l (A.92)

[Vali = p-a (4.93)

a-(Vb)=(a-V)b (A.94)

V(aa) = (Va)a+aVa (A.95)

V- (Va)l =V(V-a) (A.96)

VA(Va)=0 (A.97)

VA (Va)! =(VV aa)” (A.98)

V(aAb)=(Va)Ab—(Vb)Aa (A.99)

V. (ab)=(V-a)b+(a-V)b (A.100)

V A(ab) =(V Aa)b— (aA V)b (A.101)

[(Va)l —Va]-b=(VAa)Ab (A.102)

V A(aAb)=V-(ba—ab) (A.103)
A.6 Operations with the unit tensor |

lra=a-l=a (A.104)

INa=anl=-W, (A.105)

aAb=(Ina)-b (A.106)

(1na)? =aa—| (A.107)

(Ina)? =—-1Aa (A.108)

(Ina)* =1—-aa (A.109)

(Ihna)’ =1Aa (A.110)

(aAb)Al=Dba—ab (A.111)

aAb=(IAna)-b (A.112)

aAb=a-(IADb) (A.113)

I'LA=A-1=A (A.114)

1:Va=V-a (A.115)
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A.7 Operations with vectors, dyadics, and tensors that use the

position vector

A.7.1 Operations with one position vector

V-x=N
VAx=0
Vx =1

V- (ax) =x-Va+Na
V(ax) = (Va)x + al
Vi(x) =0
V2(ax) = x(V?a) + 2Va

A.7.2 Operations with one arbitrary vector and one position vector

V- -(xANa)=-x-(V Aa)
V.-(aAx)=x-(V Aa)

VA (ax) = (Va) Ax
VA(xAa)=x(V-a)— (N —-1)a—(x-V)a
V(x-a)=(x-V)at+a+xA(VAa)
V(x-a)=a+ (Va)-x
(Va) - x=(x-V)a+xA(VAa)
(aANV)Ax=—2a
V(x-a)=xAV)Aa+xV-a+ N —2)a
VA(anx)=2a—-xA(VAa)+ (xAV)Aa
V(xAa)=IlAna—(Va)Ax
V- (ax) =(V-a)x+a
V. (xa) =Na+ (x-V)a
V. (xa—ax)=VA(aAx)

V. (xa+ax)=2a+2(V-a)x+ VA(aAx)
xA(VAa)=(N-1)a+V(x-a)— V- (xa)
xAN(VAa)=(N-2)a+V(x-a)—VA(aAx)— (V- -a)x
VARA(VAa)]=-N-1)VAa—(x-V)VAa

A.7.3 Operations with two arbitrary vectors and one position vector

V. [(anb)x]=[(x-V)ajAb+aA[(x-V)b]+NaAb
V- -[(arnb)x]=[(VAa)-b—a-(VADb)jx+aAb
(a-V)(xAb)=aAb+xA(a-V)b
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A.7.4 Operations with tensors and one position vector

V- -(SAx)=—xA(V-S)
V- (WAx)=-=2w+xA(VAW)
V- (xANA)=—-x-(VAA)

VAV -u)]=Q

(A.144)
(A.145)
(A.146)

(A.147)



Annexe B

Thermodynamics : Maxwell Equations and
Jacobians

B.1 Mathematics

The total (exact, proper) differential of z = z(z,y) is given by :

Total differential

0z 0z
dz = (ax)yda:—}— (ay)gcdy (B.1)

Reciprocally, if
dz = Mdx + Ndy. (B.2)

then the relation is a total differential if and only if :

().~ (&), ®9

that is :

Cross derivatives

@(3)) -GG, .

If v = z(y, z) and y = y(x, 2) then :

ox or y dy
f— —_— = —_— e . B'
dx (3y>zdy+<8z>ydz and dy (aw>zda:+(az)$dz (B.5)

and inserting dy from the second relation into the first relation, and collecting the terms in dx and dz

(5. () o= [(50). ()= (3) )=

Since x and z can be varied independently, we can set dz = 0 and dz = 0 separately, giving respectively,

the reciprocal relation
Ox oy
hatid ) =1 B.
<5y>z(8w>z > (B0

Reciprocal relation
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and the reciprocity relation

(5).2,--(3), -
(5.2,

These relations can be obtained in an alternative manner. From :

0z 0z
dz = ((%c)ydIJr <&U)Ldy (B.11)

then by dividing by dz for y constant (dy = 0) :
@@ @
Similarly, dividing by dz keeping z constant (dz = 0) : z
- (5),).(5).3). » G).G@).E),-+ o

B.2 Maxwell Equations

Reciprocity relation

From Gibbs equations :

de = Tds — pdv (B.14)
dh =Tds + vdp (B.15)

and the associated total differentials :
de = (gi)vds+ (gz)sdv (B.16)
= (2 e (2) e

then we deduce :

r- (%) o1
R <gz>s (B.19)
T (gg)p (B.20)
Y @2)8 (B.21)

and by cross-derivatives, we obtain :
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Maxwell relations I

(B.22)

(B.23)

Using other thermodynamic potentials, such as Helmholtz free energy f and Gibbs free energy g :

f=e—Ts (B.24)
g=h—-"Ts (B.25)
then
df = —sdT — pdv (B.26)
dg = —sdT + vdp (B.27)
hence
__(9f
s=— (8T)U (B.28)
__(9f
_ (99
v= <ﬁg> (B.31)
op) r
from which we deduce :
Maxwell relations 11
Jds [ Op
(o), = (7). (B2
Os ov
&), ()

B.3 Jacobian methods

The material in this section comes from Carroll (1965); Crawford (1949); Margenau and Murphy

(1956); Shaw (1935); Sherwood and Reed (1939); Tribus (1961); ?.

The Jacobian can be written as :

(A, B) _[AB] _Y{AdB_ (gé)p <g§>c (aA

8(C7D)_[C,D]_7{CdD_ (gg) (gg)
D C

ac

Properties :
[A,B] _(0A
[C,B]  \oC B

)D (B.34)

(B.35)
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Jacobian methods

Then we can write :

[4,B] _
[¢.D]

[A, D] [B,C]
[C,D] [D,C)|

[A,C] [B, D)
- [D,C][C, D]

If the independent variables are obvious, then we can simplify the notation :

o=
’[A,B]:—[B,A]‘ or J(A,B) 0(B,A)

a(C,D) ~ a(C,D)

0A 0A
dA = <8B>CdB+ <8O>Bdc
A,C]
,C]

1dA+[C, Ald

).

WM

14,1 4, B]
BBt EgC

ac

(0, BldA =0, B 2% B+ [0, B FCX g
B=0]

B

~|[4,BldC + [B,C
(4, B}(ZZ) [BC(
A,
1, D] 1, D]
[B,C][A, D] +[C, A] B,

€, D]
[, D]

~[[4, B][C, D] +

— [A, B] -0

+[B,C]

D] =0]

Using
dA=bdB + cdC

with

then :

[A,D] . [B,D] [C,D
“ZD iz TZD
~[[4,D] = b[B, D] +¢[C, D] |

Using Gibbs equations, we find :

Converting Maxwell equations :

(B.36)

(B.37)

(B.38)
(B.39)

(B.40)

(B.41)

(B.42)

(B.43)

(B.44)

B.45
B.46
B.47
B.48

e e e
o — —
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using Jacobians, gives :

pol _ [T,
[s,] [v, 5]
[v,p] _ [T.s]
[s,p]  [p,s]
s, T] _ [p,v]
[v,T] [T,v]
[s, 7] _ _[v,p]
p,T]  [T.p]
that is, one single equation :
[p,v] = [T, 5] (B.49)
which means that :
fpdv = des (B.50)
which could have been inferred from Gibbs equation de = T'ds — pdv since :
]{ de =0 (B.51)
B.4 Measurable quantities
. . - 1 /0v 1[v, T
Coefficient of isoth 1 bility : =— (= = —— B.52
oefficient of isothermal compressibility :  a., » <3p)T o T] ( )
Coefficient of isobaric thermal expansion : 3, = % <§;>p = % [[;’,];]] (B.53)
Specific heat at constant pressure : ¢, =T s =T 15, 7] (B.54)
P ar), [T,
Specific heat at constant volume : ¢, =T 9s =T 5, 9] (B.55)
aT ), (T, v]
B.5 Speed of sound
The speed of sound is defined as :
dp dp
=) == B.56
().~ (&), 5%
[s, D]
T T,p
o\ _ sl _ sl pl P oIl el T) e (0p B
v [v,8]  [s,7] [s,] e [Tov] e, T] ¢, \Ov/p '
s T [T, v]
[T’ v]
Isentropic speed of sound
dp ¢, {Op dp
Op), ¢cu\9p)r 7 op)r ( )
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B.6 Meyer equation

[s,v] [s, ]
_oplsiol L (Tp] L [Tpl T s,
© =T =T E] =TI T ey (T (B.59)
[T, p] [p, T
Using Equation B.36 : o0 53] 0.7 .
s,v) s, pl [v,T - s, T| |v,p
T~ AT b7 T (5:60)
and with [s,T] = [v,p] :
[s;v] _ [s,p] [0, 1] [v,p] [v,p] _ [s,p] [v,T] | [v,p] [v,p]
T~ TAbT BIm - b1 Tl Tl (361
[s, ] P (v 0252
Top] = (—vag,) +v°p, (B.62)
then : -
¢y = —— ‘%”(w%) + 022 (B.63)
T
Cy =Cp— Tvﬂ—g (B.64)
®p
or :
Meyer equation ,
Cp—Cy = va—p (B.65)
This relation can also be obtained from Equation B.42 :
[T, 8] [p, v] + [s,p] [T, v] + [p, T [s,v] = 0 (B.66)
With [T, s] = [p,v] :
[p.o] Ip.v] + 2 [T.p] [T.0] + [p. 7] 25 [To0] = 0 (B.67)
el epllopl [Tp) o (fepl) L B
% ”‘ﬁnﬂ@ﬂ‘TWMWMWJr‘T<EM)[uﬂ‘ (B.68)
[p, T
B.7 Joule-Thomson coefficient
[,n] [hT]
_ (9T _[T,h] _ [T.p] _ [p,T)
“JT<8p>h[p,h} Tk Tl (B.69)
T,p) T, p
Using Gibbs equation dh = T'ds + vdp
(1] _ 110,
il T[p’ 7 + (B.70)
[h,p] _ o 15,7] (B.71)
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With : o . .
- R R L2 T
p,T)  [p,T)  [T,p] Br (B.72)
[s,7] _
T[T,p] S (B.73)
then :
BT

(B.74)
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Annexe C

Chaleurs Spécifiques

L’objectif de ce Chapitre annexe est de présenter les grandes lignes du comportement des chaleurs
spécifiques d’un gaz en fonction de la température. Pour de plus amples détails, le lecteur peut se référer
a louvrage classique de Vincenti and Kruger (1967). La discussion présente suit fidélement ’exposé dans
les ouvrages de Liepmann and Roshko (1957, Chap. 14), ainsi que 'ouvrage de Thompson (1972, Chap.
2).

C.1 Eléments de physique statistique et quantique

C.1.1 Degrés de liberté d’une molécule

Un gaz parfait est constitué de molécules qui n’interagissent que trés peu entre elles (sauf lors de
collisions, qui n’occupent qu’une fraction infime du temps de vie d’une molécule), et la contribution de
I’énergie potentielle résultant des interactions intermoléculaires a ’énergie interne est négligeable. Toute
I’énergie du gaz réside donc dans la molécule elle méme. Sous ces conditions, le théoréme d’équipartition
de la physique statistique classique prévoit une énergie moléculaire moyenne de 1/2 - kT par degrés de
liberté de la molécule, o k est la constante de Boltzmann et T la température. Le nombre de degrés de
liberté f (f pour freedom en anglais) est simplement le nombre de coordonnées généralisées requises pour
fixer I’état d’énergie de la molécule, qui peut alors s’écrire comme la somme de f termes quadratiques
en ces coordonnées généralisées.

Degrés de liberté associés a la translation d’une molécule

Pour une molécule de masse m et de coordonnées x1, x2, x3, le nombre de degrés de liberté associés
a sa translation est égal & f = 3 correspondant aux coordonnées généralisées (quantité de mouvement)
p1 = miy, pa = mi, p3 = mis de la molécule avec 1’énergie (cinétique) associée p? /2m+p2 /2m+p? /2m.

Degrés de liberté associés a la vibration d’une molécule (diatomique)

Une molécule diatomique aura (outre des degrés de liberté associés a sa translation et sa rotation)
des degrés de liberté supplémentaires associés & sa vibration. Avec la fréquence propre de vibration de la
molécule w, énergie de vibration peut s’écrire en fonction de deux coordonnées généralisées (allongement
x du “ressort” et quantité de mouvement p = mi) comme p?/2m + mw?x? /2, donnant ainsi f = 2 degrés
de liberté associés a sa vibration.

C.1.2 Energie et enthalpie interne d’un gaz

D’une maniére générale, I’énergie interne d’une molécule avec f degrés de liberté est égale a :

f

Un gaz contenant des molécules avec f degrés de liberté a donc une énergie interne massique e donnée
par

e= ng. (C.2)
L’enthalpie spécifique est alors
2
hZ@-i-pU:gTT-i-?”T:f;_ rT (C.3)



134 Eléments de physique statistique et quantique

C.1.3 Chaleurs spécifiques et vy

Les chaleurs spécifiques sont alors égales a

Cy = ir
2
(C.4)
c Ui 2r
P 2
donnant ainsi pour le rapport des chaleurs spécifiques
f+2
= B (C.5)

Un gaz parfait satisfaisant le théoréme classique d’équipartition d’énergie est ainsi calorifiquement
parfait car v = cste.

C.1.4 Gaz monoatomique

Pour un gaz monoatomique (He, Ne, Ar, etc.) avec la structure moléculaire la plus simple, il n’y a
que 3 degrés de liberté associés avec la translation de la molécule, donnant ainsi f = 3. La relation (C.5)
donne

5
v= 3 = 1667 (C.6)
qui est bien confirmé par lexpérience (Figure C.1).
1.7
1667 —5/3 \ He, Ar, Ne
16 \
15
c 7/5

y= c_p 1.4 \\
13
™

1.2 N 14/12
co, =

15/13

10 100 1000 10000

Température [K]

FiGURE C.1 — Variation avec la température de la chaleur spécifique de gaz formés de molécules mono-
atomiques, diatomiques, et triatomiques

C.1.5 Gaz formé de molécules complexes

A Tautre extréme, un gaz composé de molécules complexes aura un nombre de degrés de liberté f
trés grand f — oo et aura ainsi un rapport de chaleurs spécifiques v tendant vers 1.
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C.1.6 Gaz général

Ainsi, d’une maniére générale,
1 <~v<1.667 (C.7)

C.1.7 Gaz diatomique

Pour une molécule diatomique (formée de deux atomes) telle Ho, N3, Og, etc., le nombre de degrés
de liberté s’évalue comme suit

Translation du centre de masse
Rotation par rapport a4 2 axes principaux
Vibration par rapport au centre de masse

s =
|
N DN W

Cette valeur de f donne un rapport de chaleur spécifiques égal a v = 9/7 = 1.286. Expérimentalement
(Figure C.1), on observe que la valeur de ~ est plus proche de 1.4 a des températures ambiantes, et
diminue vers cette valeur de 1.286 & des températures plus élevées (quelques milliers de kelvin). La
théorie classique de 1’équipartition semble donner la bonne valeur seulement aux températures élevées.
La raison est que la théorie de la physique classique ne prend pas en compte correctement la quantification
de I'énergie. Ce phénomeéne est d’ailleurs évident dans le cas de la molécule d’hydrogéne (Figure C.1).
A des températures faibles (moins de 100 K), le v de I'hydrogéne est sensiblement identique & celui
des molécules monoatomiques, comme si les degrés de liberté de rotation et de vibration n’avaient pas
été activées. A des températures trés élevées, on retrouve 7 = 9/7, tandis que pour les températures
intermédiaires, la valeur v = 1.4 refait son apparition.

Sans vouloir rentrer dans les détails de la mécanique quantique, il suffit de mentionner que les degrés
de liberté sont activés ou activés seulement & partir de certaines valeurs de température. On appelle 6 la
température d’excitation, et on y ajoute I'indice r ou v selon qu’il s’agisse de I'excitation de la rotation
ou de la vibration. Les valeurs de ces températures pour des gaz communs sont indiquées sur le Tableau.

0., K| 0,, K
M, | 875 | 6325
No | 29| 3393
O, | 211 2273

TABLE C.1 — Température d’excitation des degrés de liberté de molécules diatomiques.

Quand la température est inférieure & 6,., seule le degré de liberté de translation intervient, et la
molécule diatomique peut étre assimilée & un gaz monoatomique avec f = 3 et v =5/3 = 1.667.

Quand la température est nettement supérieure a 6, mais largement inférieure a 6, seuls les trois
degrées de liberté de translation et les deux degrés de liberté de rotation sont activés, et 'on a alors
f=3+2=5ety=7/5=14.

Finalement, quand la température est largement supérieure a 6,, les degrés de liberté de translation,
de rotation et de vibration sont activés, et I'on a alors f =3+2+2="Tet v=9/7 = 1.286.

Il est & remarquer que pour des températures communément rencontrées en ingénierie, le degré de
liberté de rotation est toujours activeé.

La mécanique quantique montre alors que dans la plage de température proche de 6,, les chaleurs
spécifiques varie avec la température selon les relations

~[5 (8,/T)%%/T
o=r [ ]

(C.8)
o= r=r 1y BT
P v 2 (e9/T —1)2

En résumé
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T<60,, f=3, cv:gr, cp:gr, 72221.667

b, <T <6, f=3+2 C*§T cfzr *3*14

r vy - ) v*27 p*27 ’7*5* (Cg)
7 9 9

T>0,, f=3+2+4+2, Cv:§T7 cp:§r, 7:?:1.286

A des températures plus élevées que 6, d’autres phénoménes entrent en jeu, en particulier la dis-
sociation et l'ionisation. Dans ce cours, ces phénoménes ne seront pas pris en compte. Ils font partie
intégrante d’un cours en hypersonique.

C.1.8 Gaz triatomique

Certains gaz triatomiques se retrouvent communément dans de nombreuses situations d’ordre pra-
tique, en particulier dans les problémes associés aux phénoménes de combustion. Ces gaz sont 1’eau
(H20) et le dioxyde de carbone (COs3), les produits principaux issus de la combustion d’hydrocarbures
avec l'oxygéne. Le comportement du ~ de ces gaz en fonction de la température apparait sur la Figure
C.1.

La molécule de dioxyde de carbone voit ses degrés de liberté de vibration activés & des températures
assez faibles. Ainsi, dans les plages de température rencontrées communément en ingénierie, -y varie assez
fortement entre 7/5 = 1.4 et 15/13 ~ 1.15. Sa valeur de 7/5 (quand les modes de vibrations ne sont pas
activés) provient du fait que sa configuration est linéaire et donc similaire & une molécule diatomique. A
haute température, la molécule de dioxyde de carbone a 4 modes de vibration, donc 8 degrés de liberté
en vibrations (sous forme cinétique et potentielle), pour un total de 3 + 2 + 8 = 13 degrés de liberté.

Quant & la molécule d’eau, a des températures ambiantes elle tend vers des valeurs de 7y égales a
8/6 = 4/3, ce qui est di au fait que la molécule d’eau a 3 modes de rotation & cause de sa forme en
V, contrairement a la molécule de dioxyde de carbone qui n’en a que deux (& cause de sa configuration
linéaire). A haute températures, la molécule d’eau a 3 modes de vibrations, donc 6 degrés de liberté, ce
qui lui confére un nombre total de degrés de liberté égal & 3+ 3+ 6 = 12, et donc des valeurs de ~y égales
a14/12=7/6 ~ 1.17.



Annexe D

Ecoulements et Débit Massique dans une
Tuyére

Dans cette annexe, nous allons étudier quantitativement le comportement du débit massique dans
une tuyeére convergente et une tuyére convergente-divergente.

D.1 Conditions a la sortie d’une tuyére

A la sortie d’une tuyére, ’écoulement se comporte comme un jet libre. En d’autres termes, il y a
séparation de I’écoulement au niveau de la paroi de sortie car ’écoulement ne réussit pas a entreprendre
un changement de direction brusque.

Le milieu ambiant ou se déverse le jet (qui peut étre "atmosphére ou le vide) est & une pression qu’on
appelle ambiante, atmosphérique, ou arriére (de anglais back pressure). La pression au sein du jet a la
sortie est appelée pression de sortie (exit pressure en anglais).

L’interface entre le jet et le milieu ambiant (qui peut étre le vide) porte différent noms, comme surface
(ou couche) de cisaillement, surface libre, ou encore surface de contact (contact surface en anglais).

p ambiante > p arriere

p sortie

\ surface libre

surface de contact
surface de cisaillement

FIGURE D.1 — Ecoulement en sortie de tuyére.

Nous ne rentrerons pas dans les détails de la structure complexe de ’écoulement au niveau de cette
interface, mais nous distinguerons deux cas, selon que I’écoulement est subsonique ou supersonique & la
sortie.

Subsonique

En supposant que le milieu ambiant reste globalement inaltéré par la présence du jet, la condition
habituelle au niveau de 'interface est qu’il y ait continuité de la pression

Psortie = Parriere, (D]')

qui est la condition standard pour les écoulements incompressibles (jet d’eau dans ’atmosphere).

Supersonique

La condition de continuité de la pression a travers I'interface reste toujours valable, et ainsi, & une
petite distance au dela de la sortie, la pression dans le jet est égale a la pression arriére. Cependant,
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comme I’écoulement est supersonique, la condition de pression juste aprés la sortie du jet ne peut remonter
I’écoulement, et de ce fait la pression de sortie du jet peut étre inférieure, égale, ou supérieure a la pression
arriére.

Si la pression de sortie est égale a la pression arriére, la configuration du jet est identique & celle d’un
écoulement subsonique.

Si la pression de sortie est supérieure a la pression arriére, une onde de détente permet a ’écoulement
de passer d’une région de haute pression a une région de basse pression (voir chapitre sur les écoulements
de Prandtl-Meyer). La tuyére est alors sous-détendue (under-expanded en anglais).

Si la pression de sortie est inférieure & la pression arriére, une onde de choc permet & ’écoulement
de passer d’une région de basse pression & une région de haute pression (voir chapitre sur les ondes de
choc). La tuyeére est alors sur-détendue (over-expanded en anglais).

Il va sans dire que la condition ou la pression de sortie est égale & la pression arriére est ce que ’'on
appelle le point de fonctionnement (ou design operation) de la tuyere.

p arriere p arriere p arriere
P
—r. =%
—s
— —_— — -
- p sortie < p arriere ~ - p sortie — p arriére — ° - p sortie > p arriére —>
Z >
7 — = SN
TEm=y

FI1GURE D.2 — Etat de sortie des tuyéres en régime supersonique. De gauche & droite : sur-détente, point
de fonctionnement, sous-détente.

D.2 Débit massique en écoulement isentropique

D.2.1 Débit massique en fonction du nombre de Mach

Nous avons vu dans le chapitre 5 que le débit massique peut s’écrire

~y+1
-1 T 2(v-1)
h = %AWM <1 + 72M2) : (D.2)
ou de maniére équivalente
= 204 (14 2t e D.3
= Javan (145 he) (B3

En particulier, il est & remarquer que le débit massique ne dépend que de
* Conditions de réservoir (pg, Tp)

* Nombre de Mach local (M)
* Aire de la section locale (A)

D.2.2 Débit massique en fonction de la pression

Le débit massique
m = puA (D.4)

peut étre exprimé en fonction de la pression en utilisant ’expression pour la masse volumique (en

écoulement isentropique)
1
p Y
P =po () ; (D.5)
Po
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ainsi que l'expression pour la vitesse (voir discussion sur le tube de Pitot en chapitre 4)

()]
()]

1 (;) %l, (D.8)

~—1

. 7 po (p)i (p)
m= A,/ —— — 1—(— . D.9
v—1rTh \po Do (D-9)

Il est & remarquer que cette relation aurait pu étre obtenu directement en explicitant le nombre de Mach
M en fonction de p/pg & partir de la relation

Po y—1. 5 7
— =14+ ——M D.10
p ( . ) ’ (D-10)

et en remplagant dans la relation du débit en fonction du nombre de Mach, Equation D.3.

2971y
v—1

—~~

D.6)

donnant ainsi

1
¥ 27T
m:po(p) A, 2T
Po

ou, en regroupant les termes de pression,

. 27TTo(p>
i = pody | L0 (2
v—1 \po

2

ou encore

D.2.3 Représentation graphique et valeurs soniques

On a ainsi deux relations pour le débit massique, Equation D.3 et Equation D.9, une en fonction du
nombre de Mach local M et une en fonction de la pression locale p. Ces deux relations peuvent étre sous
forme adimensionnelle

y+1
/1T —1 T26-D
BVIS0 — AM (14+ =2 : (D.11)
poA 2
. T 5 1 =1
v ¥
Ty i (p) 1— (p) , (D.12)
PoA 7—1\po Po
dont la représentation graphique est donnée sur la Figure D.3.
LA R 7 — AT, _ G 6847 ennmenee p—
poA>Z< /"/ h \\\\ po"'jl>Z< 7 P
06 P 0.6 /

5 y / ' i \
- // : \ : / i \‘\
1T,  osf 7 i \ mAfrTy osf // ! \
i [ i )
3 i 3 i

F1GURE D.3 — Variation du débit massique avec la pression et le nombre de Mach pour v = 1.4.

Quand le nombre de Mach est égale a 'unité M = 1 (conditions soniques), on peut vérifier que ces
deux expressions fournissent le méme résultat

y+1
/7T v1) T
- = - D.13
e ﬁ( : ) , (D.13)
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. 1\ 71
i:(”?) T (D.14)

Selon les valeurs de «y, on obtient les valeurs de la table ci-dessous (les valeurs pour la pression ont
déja été rencontrées dans le chapitre 4)

Monoatomique | Diatomique
~ 5/3 =1.667 7/5=1.4 9/7 =1.286
s T
MVIZo 0.7262 0.6847 0.6647
oA
% 0.4871 0.5283 0.5483
0

TABLE D.1 — Débit massique et pression aux conditions soniques

La Figure D.3 présente fournit une image riche en détails.

Le paramétre de 'ordonnée /7Ty /po A ne représente pas le débit massique, mais le débit massique
par unité de surface (de la section de la tuyére), en considérant que les conditions de réservoir soit
constantes. Cette quantité peut donc étre examinée de deux maniéres.

Pour un débit donné (donc 7 fixe), qui sera constant le long de la tuyére (par conservation de masse),
ce paramétre 11/ /poA est une indication de la variation de section le long de la tuyére en fonction
de la variation du nombre de Mach M local et de la pression locale p. Ainsi, pour un débit donné, il est
possible de suivre I’évolution du nombre de Mach et de la pression en fonction de la section (en inversant
Pabcisse et 'ordonnée), a condition que ’écoulement soit isentropique.

D’autre part, pour une section donnée de la tuyére (donc A fixe), le parameétre ri/rTy/poA est
une indication du débit massique en cette section particuliére de la tuyére en fonction du nombre de
Mach local M et la pression locale p/pg. Cette interprétation nous permettra en particulier d’évaluer la
variation du débit en sortie d’une tuyére convergent avec les variations de la pression de sortie.

Les deux courbes de la Figure D.3 présentent toutes deux un maximum, qui, de surcroit, se produit
4 un nombre de Mach M = 1 et a une pression correspondant & la valeur dans des conditions soniques
P« /po. Pour une valeur de la section donnée, on en conclut que le débit massique est maximum quand la
vitesse de I’écoulement atteint la vitesse du son. Cette propriété sera liée au concept de blocage sonique
(choked flow).

Ces remarques nous permettent maintenant d’examiner en détail ’écoulement dans une tuyére conver-
gente et une tuyére convergent-divergente.

D.3 Ecoulement dans une tuyére convergente

L’écoulement dans une tuyére convergente est engendrée par une pression totale py régnant en amont
de la tuyére. La configuration de ’écoulement va dépendre de la pression arriére p.rriere & la sortie
de la tuyére, que 'on nomme également pression ambiante ou pression en aval (back pressure en langue
anglaise), que 'on dénotera avec l'indice «, donc p,. Cette pression peut varier de la valeur p, = po (sans
écoulement) jusqu’au vide (p, = 0), indépendamment des conditions dans le réservoir. En particulier,
dans certaines souffleries supersoniques, la pression en aval de la tuyére peut étre réglée arbitrairement
en évacuant la tuyére dans une chambre a pression ajustable. Pour une tuyére de fusée, la pression
arriére représente la pression atmosphérique ambiante, qui peut varier selon l'altitude de la fusée, jusqu’a
atteindre une valeur presque nulle (par rapport a la pression de réservoir) au-dela de la troposphére.

La Figure D.4 illustre les différents points d’opération de la tuyére en fonction des différentes valeurs
de la pression arriére (a, b, ¢, d). Le graphe du débit massique est considéré en sortie de tuyére, ou la
section a une valeur minimale.

Quand la pression arriére a la méme valeur que dans le réservoir (cas a), aucun écoulement ne se
produit.
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FIGURE D.4 — Ecoulement dans une tuyére convergente en fonction de la pression arriére (pour v = 1.4).

Quand la pression arriére a une valeur située comme dans le cas b, entre le cas a et ¢, c’est a dire
entre p, et pg, un écoulement subsonique se produit dans la tuyére. Dans ce cas, la pression arriére est
égale a la pression en sortie de tuyére. Par exemple, pour p,/po = 0.65, les tables isentropiques pour
~v = 1.4 fournissent un nombre de Mach M = 0.81 en sortie de tuyére. Le débit massique a alors une
valeur particuliére dépendante des conditions de réservoir et de la valeur de 'aire de la section de sortie
A.

Quand la pression arriére est égale a p, (cas c¢), ’écoulement est sonique en sortie de tuyére (M = 1).
Pour v = 1.4, on a vu que p./py = 0.5283 (cette valeur se retrouve dans les tables isentropiques pour
M = 1). En ce point de fonctionnement, le débit massique a atteint sa valeur maximale, qui pour v = 1.4
est égale & mi/7T0/poA. = 0.6847.

Si la pression arriére est réduite au dessous de cette valeur p, (cas d), écoulement dans la tuyere
restera inchangé, étant donné que le nombre de Mach maximal dans une tuyére convergente est égal a 1
et celui-ci se produit o la section est minimale, donc au col (sortie de tuyére). La détente se produira
alors a lextérieur de la tuyére (par des ondes de détentes). En particulier, la pression de sortie de tuyére
restera égale a p,, et les ondes de détentes (& l'extérieur de la tuyére) permettront a I’écoulement de
rejoindre la valeur de la pression arriére (inférieure a p,).

Lorsque I’écoulement devient sonique au col, aucune perturbation ne peut remonter dans le convergent.
Par conséquent, I’écoulement dans le convergent ne communique plus avec I’écoulement en aval du col et
n’a aucun moyen de savoir que la pression de sortie continue & diminuer. Physiquement, ce phénoméne
est facile & comprendre du fait qu’aucun message (se propageant a la vitesse du son) ne peut remonter
I’écoulement si en un endroit la vitesse est égale a la vitesse du son.

Le débit-masse ne dépend que des conditions régnant dans le réservoir et non pas de la pression arriére
a condition toutefois que I’écoulement soit sonique au col. Ainsi, pour une valeur de pg constante, le débit-
masse sortant de la tuyére n’augmente pas en baissant la pression arriére (Fig. D.4). Ce phénoméne
constitue leffet de blocage sonique (choked flow) d’un écoulement compressible. La valeur du débit
massique est donné par mi.v/rTp/poAs. = 0.6847 (pour v = 1.4).

D.4 Tuyére convergente-divergente ou de Laval

L’écoulement dans une tuyére de Laval engendré par une pression totale py régnant en amont de la
tuyére se présente comme indiqué sur la Figure D.5 en fonction de la pression variable p, régnant en
aval de la tuyére.

Si p,, est suffisamment élevée, ’écoulement demeure subsonique tout le long de la tuyére (cas a et b).

Dauns le cas ¢, le col devient sonique au moment ou la pression arriére a une valeur particuliére (égale
a celle du cas c¢). L’écoulement est isentropique tout le long de la tuyeére, et en particulier, subsonique. Le
fait que I’écoulement soit subsonique dans la parie divergente est confirmé par la tendance de la pression
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FIGURE D.5 — Ecoulement dans une tuyére convergente-divergente en fonction de la pression arriére.
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(qui augmente) dans la partie divergente, qui suit la tendance de la section (qui augmente également).
Dans ce cas, le débit massique a atteint sa valeur maximale, qui peut étre déterminée par sa valeur au
col (le débit massique est constant le long de la tuyére). Ainsi, pour v = 1.4, la valeur du débit massique
est donnée par mi./rTy/poA. = 0.6847, ot A, représente la valeur de la section au col de la tuyére de
Laval.

Comme ’écoulement a atteint la valeur sonique au col (M = 1), toute réduction de pression en
aval de ce col ne produira plus de changement dans la partie convergente. Il y a blocage sonique : le
débit massique a atteint sa valeur maximale et 1’écoulement dans la partie convergente (distributions de
pression, vitesse etc.) restera inchangé.

Les cas d et e étant mis a 1’écart pour l'instant, quand la pression arriére atteint une valeur égale a
celle du cas f, ’écoulement (isentropique) est alors supersonique dans la partie divergente, tout en restant
subsonique dans la partie convergente et sonique au col. Le cas f est appelé point de fonctionnement
(design operation) car la globalité de ’écoulement dans la tuyére et en sortie est isentropique et sa vitesse
de sortie est maximale (un des objectifs des tuyéres, en particulier celles des propulseurs supersoniques).

Entre les cas c et f, I’écoulement est caractérisé par la présence d’ondes de choc dans la tuyére et a la
sortie. Ce phénomeéne sera examiné dans des chapitres ultérieurs. Pour des pressions arriéres inférieures
a celles du cas f (cas g par exemple), des ondes de détente se forment en sortie (ce phénomeéne sera
également étudié dans des chapitres ultérieurs.

On remarquera qu’entre les cas ¢ et g, le débit massique ne change pas, et pour v = 1.4, cette valeur
est donnée par mi./rTy/poA. = 0.6847, ot A, représente la valeur de la section au col de la tuyére de
Laval.
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Annexe E

Ondes de détentes sur les profils
aérodynamiques et dans les tuyéres

E.1 Ecoulements supersoniques autours de profils

Une illustration classique des écoulements de Prandtl-Meyer est 1’étude d’écoulements supersoniques
autours de profils. Les grandeurs physiques intéressantes associées & ce type de géométrie, sauf les effets
visqueux, peuvent étre calculées & partir de la théorie précédente, en particulier la portance, la trainée
(non visqueuse), le centre de pression et les moments. Dans ce paragraphe, nous nous intéresserons
essentiellement aux forces de portance et de trainée.

E.1.1 Portance et trainée

Angle d’attaque

a F. F
Bord d’attaque
S o
u'f, 2 pf

Bord de fuite
FiGURE E.1 — Profil d’aile

Considérons un écoulement autour d’un profil avec un nombre de Mach amont de My, = oo /a0o. On
définit la corde du profil ¢, longueur entre le bord d’attaque et le bord de fuite du profil. On suppose que
la corde du profil est inclinée d’un angle « par rapport a I’écoulement incident. Par définition, la portance
F1, (oul'indice L rappelle le terme angalis lift pour portance) est la composante de la force aérodynamique
appliquée sur le profil et dirigée perpendiculairement & la vitesse u,, de ’écoulement amont. La trainée
Fp (ou lindice D rappelle le terme anglais drag pour trainée) est la force de résistance a ’avancement
selon la direction du mouvement. On définit alors le coefficient adimensionnel de portance par unité
d’envergure

Fr Fr,

1 -7 2 0
5Pt c P Mic

Cr, = (El)

ou la derniére égalité est obtenue par définition du nombre de Mach en utilisant la relation pour la vitesse

du son ainsi que 1’équation d’état. De la méme maniére, le coefficient de trainée est donné par

Fp  Fp
1 T 2
5PoctZ.C  FPoc Mz C

ep = (E.2)

En aérodynamique, les coefficients par unité d’envergure sont généralement dénotés par une lettre minus-
cule (¢, cp) alors que les coefficients pour les profils complets sont représentés par des lettres majuscules
(Cr, Cp).

Nous verrons que la trainée qui apparait en écoulement compressible n’est pas un phénomeéne vis-
queux mais lié aux phénomeénes de propagation d’ondes : on I'appelle ainsi la trainée d’onde et résulte
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d’une distribution de pression asymétrique sur le profil. Elle n’existe donc que dans les écoulements com-
pressibles et seulement si la portance est non nulle. En fait, on 'appelle aussi trainée due a la portance.
Il ne faut pourtant pas confondre ce phénoméne avec celui de la trainée induite rencontrée dans les écou-
lements tridimensionnels de fluides incompressibles, phénoméne qui existe aussi pour les écoulements
compressibles tridimensionnels.

E.1.2 Ecoulement autour d’une plaque plane

FiGURE E.2 — Plaque plane dans un écoulement supersonique

Considérons une plaque plane, d’envergure infinie, inclinée d’un angle « par rapport a la vitesse u.
amont d’un écoulement supersonique de nombre de Mach M,,. On suppose que ’angle d’incidence est
suffissamment petit pour que I’écoulement reste supersonique de part et d’autre du profil. A lintrados,
partie inférieure de la plaque, I’écoulement s’ajuste aprés une rotation d’angle o au moyen d’une onde de
choc oblique (solution faible). L’angle «v doit étre inférieur a I’angle de déviation maximum correspondant
au nombre de Mach M., pour un choc attaché. De méme, sur 'extrados, partie supérieure du profil,
I’écoulement s’adapte aprés une détente d’'un angle o due a une détente de Prandtl-Meyer. L’évolution
de I’écoulement se présente selon la figure E.2.

On a ainsi, sur 'extrados, une onde de détente centrée au bord d’attaque suivie d’une onde de choc
attachée au bord de fuite. Sur I'intrados le fluide traverse d’abord ’onde de choc oblique attachée au bord
d’attaque et ensuite une onde de détente centrée au bord de fuite. Les déviations étant connues a travers
les chocs et les ondes de détente, comme on suppose connues les conditions de I’écoulement amont, il
est facile a partir des relations des chocs obliques et les relations de Prandtl-Meyer de déterminer les
conditions de I’écoulement en 1 et 2 et en particulier les nombres de Mach M; et Ms, ainsi que les
pressions p; et ps.

Sur Pextrados (intrados), la pression sur la plaque est uniforme et égale & py (p1). Il en résulte une
force F perpendiculaire & la plaque. Comme py < p1, il y aura une force de portance positive et une
trainée d’onde sur la plaque respectivement données par

Fp = (p1—p2)c-cosa, (E.3)
Fp = (p1 —p2)c-sina, (E4)
dont on déduit les coefficients de portance et de trainée
2 p1 D2 )
L = — — — | cos« E.5
TME, (poo Poo (E-5)
cp = cp, tana. (E.6)

11 suffit donc de déterminer les rapport de pression p;/ps €t p2/pso qui ne dépendent que de v et du
nombre de Mach M, pour calculer la portance et la trainée d’onde. Si 'angle « est nul p; = ps et par
suite la portance est nulle. Si o # 0 comme la portance n’est pas nulle, la trainée d’onde existe et ne
dépend que de la portance.

Une remarque importante concerne I’écoulement en aval du profil, dans les régions 3 et 4. Tout
d’abord, les conditions dans ces régions n’influencent pas la force agissant sur le profil (comme on I’a vu).
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D’autre part, les écoulements en région 3 et en 4, qui se doivent d’étre paralléles, ne le sont cependant
pas avec 1’écoulement en amont du profil. La condition que la pression p3 soit égale & py (et que les
écoulements soit paralléles) permet de résoudre le probléme et déterminer Pangle de I’écoulement.

E.1.3 Ecoulement autour d’un profil en losange

Considérons maintenant un profil d’épaisseur non nulle de corde c. Pour simplifier, on prendra un
profil symétrique en forme de losange, formé de quatre cotés identiques de longueur ¢/2 cos §, o § est le
demi angle d’ouverture du losange. On supposera que I'angle d’attaque a est nul.

Détente
(isentrope)

3

FIGURE E.3 — Profil en losange aligné avec I’écoulement

Par conséquent, il n’y a pas de portance et la trainée d’onde due a la portance est aussi nulle. Pourtant
la trainée n’est pas nulle. En effet, p; = po > p3 = p4. Calculons en effet, la trainée due a chaque plaque
plane formant le corps. En considérant la symmeétrie de I’écoulement & angle d’incidence nul, nous avons

2
Fpi1=Fp2=p o/ sin 4, (E.7)
cos d
ainsi que
2
Fps=Fps=—ps3 o/ sin d, (E.8)
cos d
et par conséquent
Fp=Fp1+Fpao+ Fps+ Fpa=c(p1 —ps)tand. (E.9)

Puis, on obtient le coefficient de trainée

2 P1 D3 )
cp = — — =— | tand. (E.10
YME, (poo Poo )

Le rapport 1%10 est le rapport de pression statique a travers le choc oblique tandis que le rapport Z—i”
est le rapport de pression a travers la détente de Prandtl-Meyer. La trainée est due ici uniquement a
I’épaisseur non nulle du profil, qui intervient dans la relation par 'intermédiaire de I’angle du diédre §.
C’est la trainée d’onde due o I’épaisseur.

E.2 Ecoulements supersoniques en sortie de tuyére

E.2.1 Ecoulements en sortie

La tuyére d’un avion supersonique ou d’une fusée est dessinée de maniére a fonctionner sans choc (ni
dans la tuyeére ni dans le sillage) pour une certaine altitude au dessus du niveau de la mer. Cependant,
selon D'altitude ou la configuration de la tuyére, différentes morphologie de ’écoulement peuvent se
présenter.

Or, en particulier au niveau de la mer, la tuyére est sur-détendue (over-expanded), c’est-a-dire que la
pression a la sortie des gaz est plus faible que la pression ambiante (ou arriére). Cela a pour conséquence la
génération d’'un choc (généralement oblique) a la sortie de la tuyére. Pour atteindre la pression ambiante,
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F1GURE E.4 — Morphologie de ’écoulement en sortie de tuyére

le gaz subit une compression lorsqu’il traverse le choc. Il subit alors une déviation vers l’axe de symétrie
de la tuyére (cas entre e et f sur la Figure E.4).

En altitude, la pression en sortie est généralement plus grande que la pression ambiante : la tuyére
est alors sous-détendue (under-expanded). Afin de permettre a I’écoulement de se retrouver en équilibre
avec la pression ambiante, une onde de détente (Prandtl-Meyer) se forme en sortie et permet de détendre
lécoulement (cas g sur la Figure E.4). L’écoulement est alors dévié ves l'extérieur, élargissant ainsi la
taille du sillage. Cette morphologie est trés commune sur les clichés de fusées prises a trés hautes altitudes.

FIGURE E.5 — Sillage d’une tuyére sous-détendue (a gauche, pour la tuyére solide de la Navette Spatiale
en haute altitude) par rapport au sillage en basse altitude (& droite, qui peut étre sur-détendue ou au
point de fonctionnement)

E.2.2 Sillage des tuyéres

Les sillages des tuyéres supersoniques peuvent présenter des motifs trés esthétiques. Ces sillages
résultent d’une réflexion des ondes de choc et de détente sur ’axe du jet ainsi que le long de la surface
libre ou couche de cisaillement (shear layer), qui correspond a l'interface entre le jet et le milieu ambiant.
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Tuyére sur-détendue (over-expanded) Pour une tuyére sur-détendue, si une onde de choc apparait
sous forme de choc oblique, cette onde de choc converge vers ’axe du jet. L’onde de choc sera réfléchie,
soit normalement soit par création d’un disque (ou choc) de Mach (Figure E.6), selon les conditions de
I’écoulement, comme étudié au Chapitre sur les ondes de chocs obliques.

dane diin Ambient p,
"

FIGURE E.6 — Tuyére sur-détendue (over-expanded), avec pression de sortie égale a 0.7 bar, inférieure a
la pression arriére ou ambiante égale & 1 bar (Swiss Propulsion Laboratory, www.spl.ch).

Le choc réfléchi interagit alors avec la surface libre (Figure E.6). Comme Pécoulement en amont de
ce choc oblique (zone 2) est & pression ambiante, ’écoulement en aval (zone 3) sera a une pression plus
élevée. Afin de rejoindre la pression ambiante en zone 4, I’écoulement en zone 3 doit étre détendu : cela
peut se faire a travers une détente de Prandtl-Meyer. De ce fait, une onde de choc se réfléchit sur une
couche de cisaillement en une onde de détente centrée.

L’onde de détente interagit ensuite avec les ondes de détente provenant des régions opposées (en
2D ou 3D) : linteraction des ondes de détentes donne naissance a une région appelée non-simple (par
opposition & une région simple ne faisant intervenir qu’un seul faisceau d’ondes de détente). La méthode
des caractéristiques permet de résoudre ce genre d’écoulement.

- o e o 4 e 4 < st ! e 4 e 4 e 4 s R ¢ e o o ' i

— : N\, Jet centerline

* Jet boundary

FIGURE E.7 — Sillage de tuyére sur-détendue (Swiss Propulsion Laboratory, www.spl.ch).

Aprés réflexion de ces ondes de détente sur I’axe, elles interagissent alors avec la couche de cisaillement.
Comme ’écoulement en amont de ces ondes de détente (zone 4) est & pression ambiante, il sera détendu
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en traversant ces ondes (zone 5) afin que I’écoulement (en zone 5) soit paralléle a 'axe (Figure E.7). Afin
que ’écoulement puisse revenir & pression ambiante en zone 6, il doit étre comprimeé : les ondes de détente
doivent donc se réfléchir sur la couche de cisaillement en un faisceau de Prandtl-Meyer de compression.
La convergence de ces ondes de compression conduit généralement a une onde de choc oblique (Figure
E.7).

Le procédé se répéte alors a partir de la réflexion de ces ondes de choc obliques sur 'axe.

Tuyére sous-détendue (underexpanded) Pour une tuyére sous-détendue, I’écoulement en sortie de
tuyére est d’abord dévié vers I'extérieur par un faisceau de Prandtl-Meyer permettant & 1’écoulement
d’étre détendu vers la pression ambiante (schéma du haut de la Figure E.8).

Comme dans le cas de la tuyére sur-détendue, ces ondes de détentes se rejoignent sur l'axe et sont
redirigées vers la surface libre. Comme ’écoulement en amont de ces ondes réfléchies est & pression
ambiante (zone 2), I’écoulement sera détendu en traversant ces ondes, pour finalement générer un écou-
lement paralléle & I’axe en zone 3. Il devra donc étre recomprimé vers la pression ambiante (zone 4) en
traversant un faisceau de Prandtl-Meyer de compression (résultant de la réflexion des ondes de détentes
sur la surface libre). Ce faisceau de compression devient une onde de choc oblique convergeant vers I’axe
du jet.

Le procédé devient alors identique & celui de la tuyére sur-détendue. Il n’y a finalement qu'un dé-
phasage entre les deux formes d’écoulements (Figure E.8). Dans les détails, les écoulements ne sont pas
identiques de par la maniére dont ils sont engendrés en sortie de tuyére. En particulier, le sillage de la
tuyére sous-détendue sera globalement plus large que celui de la tuyére sur-détendue.

P2= P P4 =pp

™ Jet boundary

P4 = P»

Jet centerline

et boundary

FIGURE E.8 — Sillage de tuyére sous-détendue (haut), et comparaison avec le sillage d’une tuyére sur-
détendue (bas).
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Formulaire

Tds = de + pdv = dh — vdp.

(2) - L(2) -2

orj), T\or), T’
1

(), =7 1(5),

(F.6)

(F.7)

(F.10)

(F.11)

(F.12)
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p=nkT = (J\T;./\/l) (kNA> T = prT
A

n nombre d’atomes/molécules par unité de volume

k :  constante de Boltzmann 1.3806488 - 102
R =FkNyu :  constante des gaz parfaits 8.3144621

M : masse molaire

Ny :  constante d’Avogadro 6.02214129 - 1023
NLAM =p : masse volumique

r= % constante molaire des gaz parfaits

e= /CU(T)dT + const
e = ¢, T + const

h = /cp(T)dT + const
h = ¢,T + const

Cp—Cy =T

(F.13)

(F.14)

(F.15)

(F.16)

(F.20)
(F.21)
(F.22)

(F.23)

(F.24)

(F.25)

(F.26)
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p = const - p” (F.27)
a2 = (g]p))s :fer (FQS)
1 /0ov 1/ ov
_1(ov _l(ov F.2
1 A 7)) =29
dp
— + V. (pu)|dV =0 (F.30)
v | Ot
dp
—r . = F.31
5 TV (pu)=0 (F.31)
Q/ pudV+/pu(u-n)dS’:—/pndS+/ V-TdV—i—/ pfdV (F.32)
ot Vv S S \%4 \4
@+u-Vu:—1Vp+lV'T+f (F.33)
ot p p
u
- -T f F.34
P D Vp+V - -T+p (F.34)
o™ unwetvpir (F.35)
ot 2 o P '
Ou
E—u/\wz—Vho—i—TVs—i—f (F.36)
w2
ho=h+? (F.37)
Ly
co = e+ Fu (F.38)
D 0
p%: (gteo)+V.(peou):7V'(pu)+Vo(T~u)+p(f~u)fV'q+T (F.39)
Dhy _ 9 (pho) _Op
o = 5 + V - (phou) = 9 +V- (T-u)+p(f-u)—V.-q+r (F.40)
Ds [0 (ps) e
pTDtT[ 5t +V.(psu)| =T:Vu—-V.-q+r (F.41)
—sjnfli (F 42)
p= i :
u? 1
il Zdp = FA4
5 + pdp C (F.43)
a* (0%
o= (57, e
du AM/M
w14+ (T —1)M?2 (F.45)
w o, v p
il f_¢C (F.46)
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Fluide r
Gas Parfait (v+1)/2
Liquide de Tait | (k+1)/2

Eau 44

Ethanol 6.4

TABLE F.1 — Valeurs de la dérivée fondamentale I' & 1 Atm et 293.15 K.

T+ % = ¢, Ty (F.47)
T; —1 fuy2 —1
%:14—%(%) =1+ (F.48)
1 EE
% - (1 + 72M2> (F.49)
1 N\
%0 _ (1 + 72M2> ’ (F.50)
u2 — a2 a2 — a2
2 = F.51
o 1
L_ 2 p*:( 2 ) P*:( 2 )” (F.52)
To ~v+1 po y+1 Po y+1
Monoatomique | Diatomique
5 5/3=1667 | 7/5=14 | 9/7=1.286
T./To 0.7499 0.8333 0.8750
s/ Po 0.4871 0.5283 0.5483
P/ Po 0.6495 0.6339 0.6267
M, = ai (F.53)
+1) M?
2o O F.54
24 (y—-1)M? ( )
d d
?p - —MQIU (F.55)
dA du
1= (M?-1) — (F.56)
dA  M?—1ldp
dA M2-1 dM
AT AL M (F-58)
1+ L= M2
2
d —1_,d
;‘1 __2 . M%‘ (F.59)
du 1 dM
R N T (F-60)
1+
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PoA
—1 2(v—1)
anA 2
) 1 =1
. Y Po P\ p 7
o= Ay — = 1—
v —1yriy <P0> (Po)
/1Ty

myrTy 2fy 2

poA p

My rTo (fy—l— 1) 21
pOA*

s (2"
Do 2

Monoatomique | Diatomique
~ 5/3 = 1.667 7/5=1.4 9/7 =1.286
rTo 0.7262 0.6847 0.6647
pOA*
P 0.4871 0.5283 0.5483
Po
dp = padu
ou ou
20
ot +(uta) or
dzx

1
E:u—&-a:ao—i—%u

P1Wn,1 = P2Wn,2

p1+ prwp 1*P2+P2wn2

w721,1 h+w72L
2 2T

2

hi +

(F.61)

(F.62)

(F.63)

(F.64)

(F.65)

(F.66)

(F.67)

(F.68)

(F.69)

(F.70)

(F.71)

(F.72)

(F.73)

(F.74)

(F.75)
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]

Wn,1Wn2 = T3

(o]

J = p1Wn,1 = PaWn 2

2 [p]
J =713
[v]
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- ol 1

Po1 po1 (1+ VT_lem)ﬁ (WMT%J - L_l)ﬁ

_ _ To,2 poz| _ P02
83— 81 =802 — S0,1 = ¢pln —rIn |22 = —rln
Tox Po,1 Po.1

ol
2y 2 2 My, -1
$o— 81 =cyIn [1+ M7 —1} 1- =
{ 7+1( 1Y) v+1 M2,

1 2
292_1+§2_w71_f<p1)

p1 12t 02

v—1 p2
_ 2
Wn,1Wn,2 = Qy

P0,1A%1 = Po,2Ax2

Mn,l = M1 sin 0

(F.76)

(F.77)

(F.78)

(F.79)

(F.80)

(F.81)

(F.82)

(F.83)

(F.84)

(F.85)

(F.86)

(F.87)

(F.88)

(F.89)

(F.90)

(F.91)

(F.92)

(F.93)

(F.94)

(F.95)
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Mn’Q = M2 Sil’l(9 - 5) (F96)
2 -1 2
pQH< Mfsin2072>1+11(Mfsm291) (F.97)
7 v
p2  wpi  y+1 M?sin? 6 (F98)
Pz _ — L '
P1 Wnp2 2 L7 - M2 sin® 0
I _pap 2\’ 1 Y=l o .o 2 52 -1
2 B o 1 M7 sin” 6 M 0 — F.99
Ty p1p2 (’7 + 1) M? sin? 60 A LS Lt 2 (F.99)
2y 5 . o 2 M?2sin?0—1]"
—si=cylnd |14+ 1 (MZsin?0—1)| |1 - , F.100
52 S1 @ n{|: 7+1( 1 S )][ ,y_,'_l MfsinQO ( )
-1
1 1+ LME sin? @
Mg = — 2 — (F.101)
sin“(6 — J) VM2 sin? 6 — 2 -
M3 sin?6 — 1
tand = 2 cot 0 ! F.102
o “ M2 (v + cos 26) + 2 (F.102)
dw
ds = —/ M2 —1°2 (F.103)
M
VM2 -1 dM
vM)= [ Y0 (F.104)
1 1+ 3%=M2 M
v+1 y-=1, 5 5
v(M) = T arctan P (M? — 1) — arctan VM2 -1 (F.105)
Y- Y
V(MQ) = V(Ml) -0 (F106)
Fr, Iy,
= = F.1
cr %poou?,oc TpoeMZe (F.107)
Fp Fp
= = F.108
P Tpe  IpeZe (F-108)
Fr, = (p1 —p2)c-cosa (F.109)
Fp = (p1 —p2)c-sina (F.110)
2 b1 b2 .
cL = E \ o P cos (F.111)
¢p = cp tana (F.112)
c/2
Fp1=Fpas=p1 00/55 sin ¢ (F.113)
c/2
Fps=Fpa=—ps co/s5 sin & (F.114)

FDZFD,1+FD,2+FD73—|—FD74ZC(pl—pg)tan5 (F.115)
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ANNEXE F. FORMULAIRE

_ 2 (p _ps
cp = TAZ (poo poo) tan (F.116)
1 1 0An 09
1 1 0AC 00
10p  10u 09
2 qylouw 00 _
(M 1)u W 0 (F.120)
Ou 09
— o tugy =0 (F.121)
ov 10p
27 _—— =
TR = (F.122)
0 0
<6£ + tanpan> (v—1)=0 (F.123)
0 0
d (v—1)=0 (F.125)
dm~— N '
(v+9)=0 (F.126)
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